# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Dict, Optional, Sequence, Set, Tuple, Union import torch from peft import PeftModel from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead from ..data import get_dataset, get_template_and_fix_tokenizer from ..extras.misc import get_current_device from ..hparams import get_infer_args, get_train_args from ..model import load_model, load_tokenizer if TYPE_CHECKING: from datasets import Dataset from peft import LoraModel from transformers import PreTrainedModel def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None: state_dict_a = model_a.state_dict() state_dict_b = model_b.state_dict() assert set(state_dict_a.keys()) == set(state_dict_b.keys()) for name in state_dict_a.keys(): if any(key in name for key in diff_keys): assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-3, atol=1e-4) is False else: assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-3, atol=1e-4) is True def check_lora_model(model: "LoraModel") -> Tuple[Set[str], Set[str]]: linear_modules, extra_modules = set(), set() for name, param in model.named_parameters(): if any(module in name for module in ["lora_A", "lora_B"]): linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1]) assert param.requires_grad is True assert param.dtype == torch.float32 elif "modules_to_save" in name: extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1]) assert param.requires_grad is True assert param.dtype == torch.float32 else: assert param.requires_grad is False assert param.dtype == torch.float16 return linear_modules, extra_modules def load_train_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": model_args, _, _, finetuning_args, _ = get_train_args(kwargs) tokenizer = load_tokenizer(model_args)["tokenizer"] return load_model(tokenizer, model_args, finetuning_args, is_trainable=True, add_valuehead=add_valuehead) def load_infer_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel": model_args, _, finetuning_args, _ = get_infer_args(kwargs) tokenizer = load_tokenizer(model_args)["tokenizer"] return load_model(tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead) def load_reference_model( model_path: str, lora_path: Optional[str] = None, use_lora: bool = False, use_pissa: bool = False, is_trainable: bool = False, add_valuehead: bool = False, ) -> Union["PreTrainedModel", "LoraModel"]: if add_valuehead: model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( model_path, torch_dtype=torch.float16, device_map=get_current_device() ) if not is_trainable: model.v_head = model.v_head.to(torch.float16) return model model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map=get_current_device() ) if use_lora or use_pissa: model = PeftModel.from_pretrained( model, lora_path, subfolder="pissa_init" if use_pissa else None, is_trainable=is_trainable ) for param in filter(lambda p: p.requires_grad, model.parameters()): param.data = param.data.to(torch.float32) return model def load_train_dataset(**kwargs) -> "Dataset": model_args, data_args, training_args, _, _ = get_train_args(kwargs) tokenizer_module = load_tokenizer(model_args) template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module) return dataset_module["train_dataset"] def patch_valuehead_model(): def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]) -> None: state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} self.v_head.load_state_dict(state_dict, strict=False) del state_dict AutoModelForCausalLMWithValueHead.post_init = post_init