src / llamafactory /model /loader.py
realaer's picture
Upload folder using huggingface_hub
f6f64ac verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..extras.logging import get_logger
from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms
from .adapter import init_adapter
from .model_utils.liger_kernel import apply_liger_kernel
from .model_utils.misc import register_autoclass
from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model
from .model_utils.unsloth import load_unsloth_pretrained_model
from .model_utils.valuehead import load_valuehead_params
from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
class TokenizerModule(TypedDict):
tokenizer: "PreTrainedTokenizer"
processor: Optional["ProcessorMixin"]
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
r"""
Gets arguments to load config/tokenizer/model.
Note: including inplace operation of model_args.
"""
skip_check_imports()
model_args.model_name_or_path = try_download_model_from_ms(model_args)
return {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.hf_hub_token,
}
def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
r"""
Loads pretrained tokenizer and optionally loads processor.
Note: including inplace operation of model_args.
"""
init_kwargs = _get_init_kwargs(model_args)
config = load_config(model_args)
try:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens,
padding_side="right",
**init_kwargs,
)
except ValueError: # try the fast one
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=True,
padding_side="right",
**init_kwargs,
)
if model_args.new_special_tokens is not None:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=model_args.new_special_tokens),
replace_additional_special_tokens=False,
)
logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
if num_added_tokens > 0 and not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning("New tokens have been added, changed `resize_vocab` to True.")
patch_tokenizer(tokenizer)
try:
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_processor(processor, config, tokenizer, model_args)
except Exception:
processor = None
# Avoid load tokenizer, see:
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324
if "Processor" not in processor.__class__.__name__:
processor = None
return {"tokenizer": tokenizer, "processor": processor}
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
r"""
Loads model config.
"""
init_kwargs = _get_init_kwargs(model_args)
return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
) -> "PreTrainedModel":
r"""
Loads pretrained model.
"""
init_kwargs = _get_init_kwargs(model_args)
config = load_config(model_args)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"]))
model = None
lazy_load = False
if model_args.use_unsloth:
if model_args.adapter_name_or_path is not None:
lazy_load = True
elif is_trainable:
model = load_unsloth_pretrained_model(config, model_args)
if model is None and not lazy_load:
init_kwargs["config"] = config
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
if model_args.mixture_of_depths == "load":
model = load_mod_pretrained_model(**init_kwargs)
else:
if type(config) in AutoModelForVision2Seq._model_mapping.keys(): # assume built-in models
load_class = AutoModelForVision2Seq
else:
load_class = AutoModelForCausalLM
if model_args.train_from_scratch:
model = load_class.from_config(config)
else:
model = load_class.from_pretrained(**init_kwargs)
if model_args.mixture_of_depths == "convert":
model = convert_pretrained_model_to_mod(model, config, model_args)
if not lazy_load:
patch_model(model, tokenizer, model_args, is_trainable, add_valuehead)
register_autoclass(config, model, tokenizer)
model = init_adapter(config, model, model_args, finetuning_args, is_trainable)
if add_valuehead:
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
patch_valuehead_model(model)
if model_args.adapter_name_or_path is not None:
vhead_path = model_args.adapter_name_or_path[-1]
else:
vhead_path = model_args.model_name_or_path
vhead_params = load_valuehead_params(vhead_path, model_args)
if vhead_params is not None:
model.load_state_dict(vhead_params, strict=False)
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
if not is_trainable:
model.requires_grad_(False)
for param in model.parameters():
if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32:
param.data = param.data.to(model_args.compute_dtype)
model.eval()
else:
model.train()
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
else:
param_stats = "all params: {:,}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
print(
"name: {}, dtype: {}, device: {}, trainable: {}".format(
name, param.dtype, param.device, param.requires_grad
)
)
return model