# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, Optional, TypedDict import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoProcessor, AutoTokenizer from trl import AutoModelForCausalLMWithValueHead from ..extras.logging import get_logger from ..extras.misc import count_parameters, skip_check_imports, try_download_model_from_ms from .adapter import init_adapter from .model_utils.liger_kernel import apply_liger_kernel from .model_utils.misc import register_autoclass from .model_utils.mod import convert_pretrained_model_to_mod, load_mod_pretrained_model from .model_utils.unsloth import load_unsloth_pretrained_model from .model_utils.valuehead import load_valuehead_params from .patcher import patch_config, patch_model, patch_processor, patch_tokenizer, patch_valuehead_model if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin from ..hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) class TokenizerModule(TypedDict): tokenizer: "PreTrainedTokenizer" processor: Optional["ProcessorMixin"] def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]: r""" Gets arguments to load config/tokenizer/model. Note: including inplace operation of model_args. """ skip_check_imports() model_args.model_name_or_path = try_download_model_from_ms(model_args) return { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token, } def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule": r""" Loads pretrained tokenizer and optionally loads processor. Note: including inplace operation of model_args. """ init_kwargs = _get_init_kwargs(model_args) config = load_config(model_args) try: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", **init_kwargs, ) except ValueError: # try the fast one tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=True, padding_side="right", **init_kwargs, ) if model_args.new_special_tokens is not None: num_added_tokens = tokenizer.add_special_tokens( dict(additional_special_tokens=model_args.new_special_tokens), replace_additional_special_tokens=False, ) logger.info("Add {} to special tokens.".format(",".join(model_args.new_special_tokens))) if num_added_tokens > 0 and not model_args.resize_vocab: model_args.resize_vocab = True logger.warning("New tokens have been added, changed `resize_vocab` to True.") patch_tokenizer(tokenizer) try: processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs) patch_processor(processor, config, tokenizer, model_args) except Exception: processor = None # Avoid load tokenizer, see: # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/auto/processing_auto.py#L324 if "Processor" not in processor.__class__.__name__: processor = None return {"tokenizer": tokenizer, "processor": processor} def load_config(model_args: "ModelArguments") -> "PretrainedConfig": r""" Loads model config. """ init_kwargs = _get_init_kwargs(model_args) return AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs) def load_model( tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool = False, add_valuehead: bool = False, ) -> "PreTrainedModel": r""" Loads pretrained model. """ init_kwargs = _get_init_kwargs(model_args) config = load_config(model_args) patch_config(config, tokenizer, model_args, init_kwargs, is_trainable) apply_liger_kernel(config, model_args, is_trainable, require_logits=(finetuning_args.stage not in ["pt", "sft"])) model = None lazy_load = False if model_args.use_unsloth: if model_args.adapter_name_or_path is not None: lazy_load = True elif is_trainable: model = load_unsloth_pretrained_model(config, model_args) if model is None and not lazy_load: init_kwargs["config"] = config init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path if model_args.mixture_of_depths == "load": model = load_mod_pretrained_model(**init_kwargs) else: if type(config) in AutoModelForVision2Seq._model_mapping.keys(): # assume built-in models load_class = AutoModelForVision2Seq else: load_class = AutoModelForCausalLM if model_args.train_from_scratch: model = load_class.from_config(config) else: model = load_class.from_pretrained(**init_kwargs) if model_args.mixture_of_depths == "convert": model = convert_pretrained_model_to_mod(model, config, model_args) if not lazy_load: patch_model(model, tokenizer, model_args, is_trainable, add_valuehead) register_autoclass(config, model, tokenizer) model = init_adapter(config, model, model_args, finetuning_args, is_trainable) if add_valuehead: model = AutoModelForCausalLMWithValueHead.from_pretrained(model) patch_valuehead_model(model) if model_args.adapter_name_or_path is not None: vhead_path = model_args.adapter_name_or_path[-1] else: vhead_path = model_args.model_name_or_path vhead_params = load_valuehead_params(vhead_path, model_args) if vhead_params is not None: model.load_state_dict(vhead_params, strict=False) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) if not is_trainable: model.requires_grad_(False) for param in model.parameters(): if param.data.dtype == torch.float32 and model_args.compute_dtype != torch.float32: param.data = param.data.to(model_args.compute_dtype) model.eval() else: model.train() trainable_params, all_param = count_parameters(model) if is_trainable: param_stats = "trainable params: {:,} || all params: {:,} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param ) else: param_stats = "all params: {:,}".format(all_param) logger.info(param_stats) if model_args.print_param_status: for name, param in model.named_parameters(): print( "name: {}, dtype: {}, device: {}, trainable: {}".format( name, param.dtype, param.device, param.requires_grad ) ) return model