|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence |
|
|
|
import torch |
|
from transformers import DataCollatorForSeq2Seq |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import ProcessorMixin |
|
|
|
from .template import Template |
|
|
|
|
|
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor": |
|
r""" |
|
Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len), |
|
while handles packed sequences and transforms the mask to lower triangular form to prevent future peeking. |
|
|
|
e.g. |
|
```python |
|
# input |
|
[[1, 1, 2, 2, 2, 0]] |
|
# output |
|
[ |
|
[ |
|
[ |
|
[o, x, x, x, x, x], |
|
[o, o, x, x, x, x], |
|
[x, x, o, x, x, x], |
|
[x, x, o, o, x, x], |
|
[x, x, o, o, o, x], |
|
[x, x, x, x, x, x], |
|
] |
|
] |
|
] |
|
``` |
|
where `o` equals to `0.0`, `x` equals to `min_dtype`. |
|
""" |
|
bsz, seq_len = attention_mask_with_indices.size() |
|
min_dtype = torch.finfo(dtype).min |
|
expanded_mask = attention_mask_with_indices[:, None, None, :].expand(bsz, 1, seq_len, seq_len) |
|
|
|
padding_mask = torch.where(expanded_mask != 0, 1, 0) |
|
|
|
attention_mask_4d = torch.eq(expanded_mask, expanded_mask.transpose(-1, -2)).int() * padding_mask |
|
|
|
attention_mask_4d *= torch.tril(torch.ones((seq_len, seq_len), dtype=torch.long)) |
|
|
|
attention_mask_4d = torch.where(attention_mask_4d != 0, torch.tensor(0, dtype=dtype), min_dtype) |
|
return attention_mask_4d |
|
|
|
|
|
@dataclass |
|
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq): |
|
r""" |
|
Data collator that supports VLMs. |
|
|
|
Features should contain input_ids, attention_mask, labels and images. |
|
""" |
|
|
|
template: Optional["Template"] = None |
|
processor: Optional["ProcessorMixin"] = None |
|
|
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: |
|
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens = [], [], [], [], [] |
|
for feature in features: |
|
images = feature.pop("images", None) or [] |
|
videos = feature.pop("videos", None) or [] |
|
batch_images.extend(images) |
|
batch_videos.extend(videos) |
|
batch_imglens.append(len(images)) |
|
batch_vidlens.append(len(videos)) |
|
batch_seqlens.append(len(feature["input_ids"])) |
|
|
|
mm_inputs = self.template.mm_plugin.get_mm_inputs( |
|
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens, self.processor |
|
) |
|
if "token_type_ids" in mm_inputs: |
|
token_type_ids = mm_inputs.pop("token_type_ids") |
|
for i, feature in enumerate(features): |
|
feature["token_type_ids"] = token_type_ids[i] |
|
|
|
features: Dict[str, "torch.Tensor"] = super().__call__(features) |
|
features.update(mm_inputs) |
|
return features |
|
|
|
|
|
@dataclass |
|
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq): |
|
r""" |
|
Data collator for 4d attention mask. |
|
""" |
|
|
|
block_diag_attn: bool = False |
|
attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager" |
|
compute_dtype: "torch.dtype" = torch.float32 |
|
|
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: |
|
features = super().__call__(features) |
|
if self.block_diag_attn and self.attn_implementation != "flash_attention_2": |
|
features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype) |
|
|
|
return features |
|
|
|
|
|
@dataclass |
|
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): |
|
r""" |
|
Data collator for pairwise data. |
|
""" |
|
|
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: |
|
r""" |
|
Pads batched data to the longest sequence in the batch. |
|
|
|
We generate 2 * n examples where the first n examples represent chosen examples and |
|
the last n examples represent rejected examples. |
|
""" |
|
concatenated_features = [] |
|
for key in ("chosen", "rejected"): |
|
for feature in features: |
|
target_feature = { |
|
"input_ids": feature["{}_input_ids".format(key)], |
|
"attention_mask": feature["{}_attention_mask".format(key)], |
|
"labels": feature["{}_labels".format(key)], |
|
"images": feature["images"], |
|
"videos": feature["videos"], |
|
} |
|
concatenated_features.append(target_feature) |
|
|
|
return super().__call__(concatenated_features) |
|
|
|
|
|
@dataclass |
|
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq): |
|
r""" |
|
Data collator for KTO data. |
|
""" |
|
|
|
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]: |
|
target_features = [] |
|
kl_features = [] |
|
kto_tags = [] |
|
for feature in features: |
|
target_feature = { |
|
"input_ids": feature["input_ids"], |
|
"attention_mask": feature["attention_mask"], |
|
"labels": feature["labels"], |
|
"images": feature["images"], |
|
"videos": feature["videos"], |
|
} |
|
kl_feature = { |
|
"input_ids": feature["kl_input_ids"], |
|
"attention_mask": feature["kl_attention_mask"], |
|
"labels": feature["kl_labels"], |
|
"images": feature["images"], |
|
"videos": feature["videos"], |
|
} |
|
target_features.append(target_feature) |
|
kl_features.append(kl_feature) |
|
kto_tags.append(feature["kto_tags"]) |
|
|
|
batch = super().__call__(target_features) |
|
kl_batch = super().__call__(kl_features) |
|
batch["kl_input_ids"] = kl_batch["input_ids"] |
|
batch["kl_attention_mask"] = kl_batch["attention_mask"] |
|
batch["kl_labels"] = kl_batch["labels"] |
|
if "token_type_ids" in kl_batch: |
|
batch["kl_token_type_ids"] = kl_batch["token_type_ids"] |
|
|
|
batch["kto_tags"] = torch.tensor(kto_tags) |
|
return batch |
|
|