File size: 7,283 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2024 OpenAccess AI Collective and the LlamaFactory team.
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Sequence

import torch
from transformers import DataCollatorForSeq2Seq


if TYPE_CHECKING:
    from transformers import ProcessorMixin

    from .template import Template


def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
    r"""
    Expands the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
    while handles packed sequences and transforms the mask to lower triangular form to prevent future peeking.

    e.g.
    ```python
    # input
    [[1, 1, 2, 2, 2, 0]]
    # output
    [
        [
            [
                [o, x, x, x, x, x],
                [o, o, x, x, x, x],
                [x, x, o, x, x, x],
                [x, x, o, o, x, x],
                [x, x, o, o, o, x],
                [x, x, x, x, x, x],
            ]
        ]
    ]
    ```
    where `o` equals to `0.0`, `x` equals to `min_dtype`.
    """
    bsz, seq_len = attention_mask_with_indices.size()
    min_dtype = torch.finfo(dtype).min
    expanded_mask = attention_mask_with_indices[:, None, None, :].expand(bsz, 1, seq_len, seq_len)
    # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
    padding_mask = torch.where(expanded_mask != 0, 1, 0)
    # Create a block-diagonal mask.
    attention_mask_4d = torch.eq(expanded_mask, expanded_mask.transpose(-1, -2)).int() * padding_mask
    # Use the lower triangular mask to zero out the upper triangular part
    attention_mask_4d *= torch.tril(torch.ones((seq_len, seq_len), dtype=torch.long))
    # Invert the attention mask.
    attention_mask_4d = torch.where(attention_mask_4d != 0, torch.tensor(0, dtype=dtype), min_dtype)
    return attention_mask_4d


@dataclass
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
    r"""
    Data collator that supports VLMs.

    Features should contain input_ids, attention_mask, labels and images.
    """

    template: Optional["Template"] = None
    processor: Optional["ProcessorMixin"] = None

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens = [], [], [], [], []
        for feature in features:
            images = feature.pop("images", None) or []
            videos = feature.pop("videos", None) or []
            batch_images.extend(images)
            batch_videos.extend(videos)
            batch_imglens.append(len(images))
            batch_vidlens.append(len(videos))
            batch_seqlens.append(len(feature["input_ids"]))

        mm_inputs = self.template.mm_plugin.get_mm_inputs(
            batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens, self.processor
        )
        if "token_type_ids" in mm_inputs:
            token_type_ids = mm_inputs.pop("token_type_ids")
            for i, feature in enumerate(features):
                feature["token_type_ids"] = token_type_ids[i]

        features: Dict[str, "torch.Tensor"] = super().__call__(features)
        features.update(mm_inputs)
        return features


@dataclass
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
    r"""
    Data collator for 4d attention mask.
    """

    block_diag_attn: bool = False
    attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
    compute_dtype: "torch.dtype" = torch.float32

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        features = super().__call__(features)
        if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
            features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)

        return features


@dataclass
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
    r"""
    Data collator for pairwise data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        r"""
        Pads batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        concatenated_features = []
        for key in ("chosen", "rejected"):
            for feature in features:
                target_feature = {
                    "input_ids": feature["{}_input_ids".format(key)],
                    "attention_mask": feature["{}_attention_mask".format(key)],
                    "labels": feature["{}_labels".format(key)],
                    "images": feature["images"],
                    "videos": feature["videos"],
                }
                concatenated_features.append(target_feature)

        return super().__call__(concatenated_features)


@dataclass
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
    r"""
    Data collator for KTO data.
    """

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
        target_features = []
        kl_features = []
        kto_tags = []
        for feature in features:
            target_feature = {
                "input_ids": feature["input_ids"],
                "attention_mask": feature["attention_mask"],
                "labels": feature["labels"],
                "images": feature["images"],
                "videos": feature["videos"],
            }
            kl_feature = {
                "input_ids": feature["kl_input_ids"],
                "attention_mask": feature["kl_attention_mask"],
                "labels": feature["kl_labels"],
                "images": feature["images"],
                "videos": feature["videos"],
            }
            target_features.append(target_feature)
            kl_features.append(kl_feature)
            kto_tags.append(feature["kto_tags"])

        batch = super().__call__(target_features)
        kl_batch = super().__call__(kl_features)
        batch["kl_input_ids"] = kl_batch["input_ids"]
        batch["kl_attention_mask"] = kl_batch["attention_mask"]
        batch["kl_labels"] = kl_batch["labels"]
        if "token_type_ids" in kl_batch:
            batch["kl_token_type_ids"] = kl_batch["token_type_ids"]

        batch["kto_tags"] = torch.tensor(kto_tags)
        return batch