patrol114's picture
Update app.py
4d231f1 verified
import os
import pickle
import re
import nltk
import psutil
import numpy as np
from nltk.tokenize import word_tokenize
import tensorflow as tf
from tensorflow.keras import regularizers
from tensorflow.keras.layers import Layer, Bidirectional, Dense, LayerNormalization, Dropout, Embedding, LSTM, Conv1D, MaxPooling1D, BatchNormalization, GRU, MultiHeadAttention
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.sequence import pad_sequences
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
from sklearn.utils import shuffle
from typing import List, Optional, Set
from gensim.models import KeyedVectors
from pathlib import Path
import tempfile
import zipfile
import requests
from transformers import AutoTokenizer, AutoModel
import random
# Konfiguracja 艣rodowiska
gpus = tf.config.list_physical_devices("GPU")
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
print("Dynamiczne zarz膮dzanie pami臋ci膮 ustawione dla wszystkich GPU.")
except RuntimeError as e:
print(f"B艂膮d podczas ustawiania dynamicznego zarz膮dzania pami臋ci膮: {e}")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
tf.keras.mixed_precision.set_global_policy('float32')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('stopwords')
ZAPISZ_KATALOG = "mozgi"
KATALOG_LOGOW = "logs"
directory = "test"
log_dir = Path('logs')
tf.keras.backend.clear_session()
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
class TextProcessor:
class PositionalEncoding(Layer):
def __init__(self, d_model, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
def get_angles(self, position, i):
angles = 1 / np.power(10000, (2 * (i // 2)) / np.float32(self.d_model))
return position * angles
def call(self, inputs):
position = tf.shape(inputs)[1]
angle_rads = self.get_angles(
position=np.arange(position)[:, np.newaxis],
i=np.arange(self.d_model)[np.newaxis, :]
)
sines = np.sin(angle_rads[:, 0::2])
cosines = np.cos(angle_rads[:, 1::2])
pos_encoding = np.concatenate([sines, cosines], axis=-1)
pos_encoding = tf.cast(pos_encoding, dtype=tf.float32)
return inputs + pos_encoding
class WrappedMultiHeadAttention(Layer):
def __init__(self, num_heads, d_model, rate=0.2, **kwargs):
super().__init__(**kwargs)
self.attention = MultiHeadAttention(num_heads=num_heads, key_dim=d_model, dropout=rate)
def call(self, inputs):
return self.attention(inputs, inputs)
class TransformerBlock(Layer):
def __init__(self, num_heads, d_model, dff, rate=0.2, **kwargs):
super().__init__(**kwargs)
self.attention = TextProcessor.WrappedMultiHeadAttention(num_heads, d_model, rate)
self.ffn = Sequential([
Dense(dff, activation='relu'),
Dense(d_model)
])
self.layernorm1 = LayerNormalization(epsilon=1e-6)
self.layernorm2 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(rate)
self.dropout2 = Dropout(rate)
self.pos_encoding = TextProcessor.PositionalEncoding(d_model)
def call(self, inputs, training):
inputs = self.pos_encoding(inputs)
attn_output = self.attention(inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
class TextGenerationCallback(tf.keras.callbacks.Callback):
def __init__(self, tokenizer, input_sequence_length, model_name, model, temperature=1.0):
super().__init__()
self.tokenizer = tokenizer
self.input_sequence_length = input_sequence_length
self.model_name = model_name
self.model = model
self.temperature = temperature
self.generated_text_interval = 5
self.seed_texts = ["Dlaczego Python jest popularny?", "Co to jest AI?", "Wyja艣nij sieci neuronowe", "Dlaczego dane s膮 wa偶ne?"]
self.current_seed_text_index = 0
def on_epoch_end(self, epoch, logs=None):
if epoch % self.generated_text_interval == 0:
seed_text = self.seed_texts[self.current_seed_text_index]
self.current_seed_text_index = (self.current_seed_text_index + 1) % len(self.seed_texts)
generated_text = self.generate_text(seed_text, self.temperature, self.input_sequence_length)
print(f"\nWygenerowany tekst z modelu '{self.model_name}' po epoce {epoch + 1}:\n{generated_text}\n")
def generate_text(self, seed_text, temperature=1.0, num_words=50):
result = []
for _ in range(num_words):
encoded_text = self.tokenizer.encode(seed_text, return_tensors='tf')
predictions = self.model(encoded_text)
predictions = predictions.logits[:, -1, :] / temperature
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy()
seed_text += self.tokenizer.decode([predicted_id])
result.append(self.tokenizer.decode([predicted_id]))
return ' '.join(result)
def __init__(
self,
directory: str,
oov_token: str = '<OOV>',
glove_file: str = None,
gpt2_model_dir: str = 'gpt2',
model_name: str = 'gpt2',
input_sequence_length: int = 100,
output_sequence_length: int = 100,
batch_size: int = 32,
lowercase: bool = False,
handle_numbers: bool = True,
handle_special_characters: bool = False,
handle_stop_words: bool = True,
lemmatize: bool = True,
handle_python_code: bool = True,
lstm_units: int = 128,
dropout_rate: float = 0.2,
epochs: int = 100,
learning_rate: float = 0.00001,
amsgrad: bool = True,
kernel_regularizer: float = 0.001,
recurrent_regularizer: float = 0.001,
bias_regularizer: float = 0.001,
num_difficult_sequences: int = 50,
stop_words: Optional[Set[str]] = None,
log_dir: Optional[str] = 'logs',
):
self.oov_token = oov_token
self.directory = directory
self.glove_file = glove_file
self.gpt2_model_dir = Path(gpt2_model_dir)
self.model_name = model_name
self.input_sequence_length = input_sequence_length
self.output_sequence_length = output_sequence_length
self.batch_size = batch_size
self.lowercase = lowercase
self.handle_numbers = handle_numbers
self.handle_special_characters = handle_special_characters
self.handle_stop_words = handle_stop_words
self.lemmatize = lemmatize
self.handle_python_code = handle_python_code
self.lstm_units = lstm_units
self.dropout_rate = dropout_rate
self.epochs = epochs
self.learning_rate = learning_rate
self.amsgrad = amsgrad
self.kernel_regularizer = kernel_regularizer
self.recurrent_regularizer = recurrent_regularizer
self.bias_regularizer = bias_regularizer
self.num_difficult_sequences = num_difficult_sequences
self.stop_words = set(stopwords.words('english')) if stop_words is None else stop_words
self.tokenizer = None
self.embedding_matrix = None
self.vocab_size = 0
self.model = None
self.processed_texts = []
self.log_dir = log_dir
self.glove_model = None
self.gpt2_model = None
self.gpt2_tokenizer = None
self.load_models()
def create_tokenizer(self, texts: List[str]) -> None:
if not texts:
raise ValueError("Lista tekst贸w jest pusta lub None.")
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
print("Tokenizacja zako艅czona. Liczba unikalnych token贸w:", len(self.tokenizer.get_vocab()))
def load_models(self):
print("艁adowanie modelu GloVe...")
self.glove_model = self.load_glove_model()
print("Model GloVe za艂adowany.")
print("艁adowanie modelu GPT-2...")
if not Path(self.gpt2_model_dir).exists():
print(f"Model GPT-2 ({self.model_name}) nie jest dost臋pny lokalnie. Pobieranie...")
self.gpt2_model = AutoModel.from_pretrained(self.model_name)
self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.gpt2_model.save_pretrained(self.gpt2_model_dir)
self.gpt2_tokenizer.save_pretrained(self.gpt2_model_dir)
else:
self.load_gpt2_model()
print("Model GPT-2 za艂adowany.")
def download_file(self, url, save_path):
response = requests.get(url, stream=True)
total_length = response.headers.get('content-length')
if total_length is None:
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
else:
dl = 0
total_length = int(total_length)
with open(save_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
dl += len(chunk)
f.write(chunk)
done = int(50 * dl / total_length)
print("\r[%s%s]" % ('=' * done, ' ' * (50-done)), end='')
def load_glove_model(self):
glove_file = "glove.6B.100d.txt"
if not os.path.exists(glove_file):
print(f"Plik {glove_file} nie zosta艂 znaleziony. Rozpoczynam pobieranie...")
try:
url = "http://nlp.stanford.edu/data/glove.6B.zip"
with tempfile.NamedTemporaryFile(delete=False) as tmp_zip:
self.download_file(url, tmp_zip.name)
with zipfile.ZipFile(tmp_zip.name) as zf:
zf.extractall('.')
glove_file = 'glove.6B.100d.txt'
print("Pobrano i wypakowano plik GloVe.")
except Exception as e:
print(f"B艂膮d podczas pobierania lub wypakowywania pliku GloVe: {e}")
return None
glove_model = {}
with open(glove_file, 'r', encoding='utf-8') as f:
for line in f:
split_line = line.split()
word = split_line[0]
embedding = np.array([float(val) for val in split_line[1:]])
glove_model[word] = embedding
return glove_model
def load_gpt2_model(self):
try:
self.gpt2_model = AutoModel.from_pretrained(self.model_name)
self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
print("Standardowy model GPT-2 za艂adowany pomy艣lnie.")
except Exception as e:
print(f"B艂膮d podczas wczytywania standardowego modelu GPT-2: {e}")
def preprocess_text(self, text_input):
if isinstance(text_input, bytes):
text = text_input.decode('utf-8')
elif isinstance(text_input, tf.Tensor):
text = text_input.numpy().decode('utf-8')
else:
text = text_input
tokens = word_tokenize(text)
if self.lowercase:
tokens = [token.lower() for token in tokens]
if self.lemmatize:
tokens = [lemmatizer.lemmatize(token) for token in tokens]
if self.handle_stop_words:
tokens = [token for token in tokens if token not in self.stop_words]
return ' '.join(tokens)
def create_embedding_matrix(self, vocab_size, embedding_dim=100):
embedding_matrix = np.zeros((vocab_size, embedding_dim))
missed_embeddings = 0
all_embeddings = np.stack(list(self.glove_model.values()))
mean_embedding = np.mean(all_embeddings, axis=0)
for word, idx in self.tokenizer.get_vocab().items():
embedding_vector = self.glove_model.get(word)
if embedding_vector is not None:
embedding_matrix[idx] = embedding_vector
else:
missed_embeddings += 1
embedding_matrix[idx] = mean_embedding
print(f"Liczba s艂贸w bez dost臋pnego wektora embeddingu: {missed_embeddings}")
return embedding_matrix
def create_sequences(self):
processed_texts, _ = self._load_and_preprocess_files(self.directory, ['.txt'])
self.create_tokenizer(processed_texts)
vocab_size = len(self.tokenizer.get_vocab())
embedding_matrix = self.create_embedding_matrix(vocab_size)
sequences = []
for text in processed_texts:
encoded = self.tokenizer.encode(text)
for i in range(1, len(encoded)):
input_seq = encoded[:i]
sequences.append(input_seq)
max_sequence_len = max([len(seq) for seq in sequences])
sequences = np.array(pad_sequences(sequences, maxlen=max_sequence_len, padding='pre'))
X, y = sequences[:, :-1], sequences[:, -1]
y = tf.keras.utils.to_categorical(y, num_classes=vocab_size)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
return X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len
def _load_and_preprocess_files(self, directory, file_formats):
processed_texts = []
word_counts = {}
if not os.path.isdir(directory):
raise FileNotFoundError(f"B艂膮d: Podana 艣cie偶ka '{directory}' nie jest katalogiem.")
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and any(f.endswith(format) for format in file_formats)]
if not files:
raise FileNotFoundError("Brak plik贸w w podanym formacie w katalogu.")
for file in files:
file_path = os.path.join(directory, file)
with open(file_path, "r", encoding='utf-8') as f:
lines = f.readlines()
if not lines:
print(f"Plik {file} jest pusty.")
continue
for line in lines:
processed_line = self.preprocess_text(line)
processed_texts.append(processed_line)
word_count = len(processed_line.split())
word_counts[file] = word_counts.get(file, 0) + word_count
print(f"Przetworzono plik: {file}, liczba s艂贸w: {word_count}")
if not processed_texts:
raise ValueError("Brak przetworzonych tekst贸w. Prosz臋 sprawdzi膰 zawarto艣膰 katalogu.")
else:
print(f"Liczba przetworzonych tekst贸w: {len(processed_texts)}")
return processed_texts, word_counts
def create_and_train_model(self):
X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len = self.create_sequences()
model = Sequential()
model.add(Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=max_sequence_len - 1, trainable=False))
model.add(Bidirectional(LSTM(self.lstm_units)))
model.add(Dropout(self.dropout_rate))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
log_dir = os.path.join(KATALOG_LOGOW, self.model_name)
tensorboard_callback = TensorBoard(log_dir=log_dir)
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
model.fit(X_train, y_train, epochs=self.epochs, validation_data=(X_val, y_val), callbacks=[tensorboard_callback, early_stopping_callback])
self.model = model
self.save_model_and_tokenizer()
def save_model_and_tokenizer(self):
if not os.path.exists(ZAPISZ_KATALOG):
os.makedirs(ZAPISZ_KATALOG)
self.model.save(f'{ZAPISZ_KATALOG}/{self.model_name}.h5')
with open(f'{ZAPISZ_KATALOG}/{self.model_name}_tokenizer.pkl', 'wb') as handle:
pickle.dump(self.tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
print("Model i tokenizer zapisane.")
def main():
print("Witaj w AI Code Generator!")
directory = "test"
model_name = input("Podaj nazw臋 modelu: ")
processor = TextProcessor(
directory=directory,
model_name=model_name,
input_sequence_length=100,
output_sequence_length=100,
epochs=10,
)
processor.create_and_train_model()
print("Model utworzony i wytrenowany pomy艣lnie!")
if __name__ == "__main__":
main()