Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,420 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
import re
|
4 |
+
import nltk
|
5 |
+
import psutil
|
6 |
+
import numpy as np
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow.keras import regularizers
|
10 |
+
from tensorflow.keras.layers import Layer, Bidirectional, Dense, LayerNormalization, Dropout, Embedding, LSTM, Conv1D, MaxPooling1D, BatchNormalization, GRU, MultiHeadAttention
|
11 |
+
from tensorflow.keras.models import Sequential
|
12 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
from nltk.stem import WordNetLemmatizer
|
15 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
16 |
+
from sklearn.model_selection import train_test_split
|
17 |
+
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping
|
18 |
+
from sklearn.utils import shuffle
|
19 |
+
from typing import List, Optional, Set
|
20 |
+
from gensim.models import KeyedVectors
|
21 |
+
from pathlib import Path
|
22 |
+
import tempfile
|
23 |
+
import zipfile
|
24 |
+
import requests
|
25 |
+
from transformers import AutoTokenizer, AutoModel
|
26 |
+
import random
|
27 |
|
28 |
+
# Konfiguracja środowiska
|
29 |
+
gpus = tf.config.list_physical_devices("GPU")
|
30 |
+
if gpus:
|
31 |
+
try:
|
32 |
+
for gpu in gpus:
|
33 |
+
tf.config.experimental.set_memory_growth(gpu, True)
|
34 |
+
print("Dynamiczne zarządzanie pamięcią ustawione dla wszystkich GPU.")
|
35 |
+
except RuntimeError as e:
|
36 |
+
print(f"Błąd podczas ustawiania dynamicznego zarządzania pamięcią: {e}")
|
37 |
+
|
38 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
39 |
+
tf.keras.mixed_precision.set_global_policy('float32')
|
40 |
+
nltk.download('punkt')
|
41 |
+
nltk.download('wordnet')
|
42 |
+
nltk.download('stopwords')
|
43 |
+
|
44 |
+
ZAPISZ_KATALOG = "mozgi"
|
45 |
+
KATALOG_LOGOW = "logs"
|
46 |
+
directory = "test"
|
47 |
+
log_dir = Path('logs')
|
48 |
+
tf.keras.backend.clear_session()
|
49 |
+
lemmatizer = WordNetLemmatizer()
|
50 |
+
stop_words = set(stopwords.words('english'))
|
51 |
+
|
52 |
+
class TextProcessor:
|
53 |
+
class PositionalEncoding(Layer):
|
54 |
+
def __init__(self, d_model, **kwargs):
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
self.d_model = d_model
|
57 |
+
|
58 |
+
def get_angles(self, position, i):
|
59 |
+
angles = 1 / np.power(10000, (2 * (i // 2)) / np.float32(self.d_model))
|
60 |
+
return position * angles
|
61 |
+
|
62 |
+
def call(self, inputs):
|
63 |
+
position = tf.shape(inputs)[1]
|
64 |
+
angle_rads = self.get_angles(
|
65 |
+
position=np.arange(position)[:, np.newaxis],
|
66 |
+
i=np.arange(self.d_model)[np.newaxis, :]
|
67 |
+
)
|
68 |
+
sines = np.sin(angle_rads[:, 0::2])
|
69 |
+
cosines = np.cos(angle_rads[:, 1::2])
|
70 |
+
pos_encoding = np.concatenate([sines, cosines], axis=-1)
|
71 |
+
pos_encoding = tf.cast(pos_encoding, dtype=tf.float32)
|
72 |
+
return inputs + pos_encoding
|
73 |
+
|
74 |
+
class WrappedMultiHeadAttention(Layer):
|
75 |
+
def __init__(self, num_heads, d_model, rate=0.2, **kwargs):
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
self.attention = MultiHeadAttention(num_heads=num_heads, key_dim=d_model, dropout=rate)
|
78 |
+
|
79 |
+
def call(self, inputs):
|
80 |
+
return self.attention(inputs, inputs)
|
81 |
+
|
82 |
+
class TransformerBlock(Layer):
|
83 |
+
def __init__(self, num_heads, d_model, dff, rate=0.2, **kwargs):
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
self.attention = TextProcessor.WrappedMultiHeadAttention(num_heads, d_model, rate)
|
86 |
+
self.ffn = Sequential([
|
87 |
+
Dense(dff, activation='relu'),
|
88 |
+
Dense(d_model)
|
89 |
+
])
|
90 |
+
self.layernorm1 = LayerNormalization(epsilon=1e-6)
|
91 |
+
self.layernorm2 = LayerNormalization(epsilon=1e-6)
|
92 |
+
self.dropout1 = Dropout(rate)
|
93 |
+
self.dropout2 = Dropout(rate)
|
94 |
+
self.pos_encoding = TextProcessor.PositionalEncoding(d_model)
|
95 |
+
|
96 |
+
def call(self, inputs, training):
|
97 |
+
inputs = self.pos_encoding(inputs)
|
98 |
+
attn_output = self.attention(inputs)
|
99 |
+
attn_output = self.dropout1(attn_output, training=training)
|
100 |
+
out1 = self.layernorm1(inputs + attn_output)
|
101 |
+
ffn_output = self.ffn(out1)
|
102 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
103 |
+
return self.layernorm2(out1 + ffn_output)
|
104 |
+
|
105 |
+
class TextGenerationCallback(tf.keras.callbacks.Callback):
|
106 |
+
def __init__(self, tokenizer, input_sequence_length, model_name, model, temperature=1.0):
|
107 |
+
super().__init__()
|
108 |
+
self.tokenizer = tokenizer
|
109 |
+
self.input_sequence_length = input_sequence_length
|
110 |
+
self.model_name = model_name
|
111 |
+
self.model = model
|
112 |
+
self.temperature = temperature
|
113 |
+
self.generated_text_interval = 5
|
114 |
+
self.seed_texts = ["Dlaczego Python jest popularny?", "Co to jest AI?", "Wyjaśnij sieci neuronowe", "Dlaczego dane są ważne?"]
|
115 |
+
self.current_seed_text_index = 0
|
116 |
+
|
117 |
+
def on_epoch_end(self, epoch, logs=None):
|
118 |
+
if epoch % self.generated_text_interval == 0:
|
119 |
+
seed_text = self.seed_texts[self.current_seed_text_index]
|
120 |
+
self.current_seed_text_index = (self.current_seed_text_index + 1) % len(self.seed_texts)
|
121 |
+
generated_text = self.generate_text(seed_text, self.temperature, self.input_sequence_length)
|
122 |
+
print(f"\nWygenerowany tekst z modelu '{self.model_name}' po epoce {epoch + 1}:\n{generated_text}\n")
|
123 |
+
|
124 |
+
def generate_text(self, seed_text, temperature=1.0, num_words=50):
|
125 |
+
result = []
|
126 |
+
for _ in range(num_words):
|
127 |
+
encoded_text = self.tokenizer.encode(seed_text, return_tensors='tf')
|
128 |
+
predictions = self.model(encoded_text)
|
129 |
+
predictions = predictions.logits[:, -1, :] / temperature
|
130 |
+
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy()
|
131 |
+
seed_text += self.tokenizer.decode([predicted_id])
|
132 |
+
result.append(self.tokenizer.decode([predicted_id]))
|
133 |
+
return ' '.join(result)
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
directory: str,
|
138 |
+
oov_token: str = '<OOV>',
|
139 |
+
glove_file: str = None,
|
140 |
+
gpt2_model_dir: str = 'gpt2',
|
141 |
+
model_name: str = 'gpt2',
|
142 |
+
input_sequence_length: int = 100,
|
143 |
+
output_sequence_length: int = 100,
|
144 |
+
batch_size: int = 32,
|
145 |
+
lowercase: bool = False,
|
146 |
+
handle_numbers: bool = True,
|
147 |
+
handle_special_characters: bool = False,
|
148 |
+
handle_stop_words: bool = True,
|
149 |
+
lemmatize: bool = True,
|
150 |
+
handle_python_code: bool = True,
|
151 |
+
lstm_units: int = 128,
|
152 |
+
dropout_rate: float = 0.2,
|
153 |
+
epochs: int = 100,
|
154 |
+
learning_rate: float = 0.00001,
|
155 |
+
amsgrad: bool = True,
|
156 |
+
kernel_regularizer: float = 0.001,
|
157 |
+
recurrent_regularizer: float = 0.001,
|
158 |
+
bias_regularizer: float = 0.001,
|
159 |
+
num_difficult_sequences: int = 50,
|
160 |
+
stop_words: Optional[Set[str]] = None,
|
161 |
+
log_dir: Optional[str] = 'logs',
|
162 |
+
):
|
163 |
+
self.oov_token = oov_token
|
164 |
+
self.directory = directory
|
165 |
+
self.glove_file = glove_file
|
166 |
+
self.gpt2_model_dir = Path(gpt2_model_dir)
|
167 |
+
self.model_name = model_name
|
168 |
+
self.input_sequence_length = input_sequence_length
|
169 |
+
self.output_sequence_length = output_sequence_length
|
170 |
+
self.batch_size = batch_size
|
171 |
+
self.lowercase = lowercase
|
172 |
+
self.handle_numbers = handle_numbers
|
173 |
+
self.handle_special_characters = handle_special_characters
|
174 |
+
self.handle_stop_words = handle_stop_words
|
175 |
+
self.lemmatize = lemmatize
|
176 |
+
self.handle_python_code = handle_python_code
|
177 |
+
self.lstm_units = lstm_units
|
178 |
+
self.dropout_rate = dropout_rate
|
179 |
+
self.epochs = epochs
|
180 |
+
self.learning_rate = learning_rate
|
181 |
+
self.amsgrad = amsgrad
|
182 |
+
self.kernel_regularizer = kernel_regularizer
|
183 |
+
self.recurrent_regularizer = recurrent_regularizer
|
184 |
+
self.bias_regularizer = bias_regularizer
|
185 |
+
self.num_difficult_sequences = num_difficult_sequences
|
186 |
+
self.stop_words = set(stopwords.words('english')) if stop_words is None else stop_words
|
187 |
+
self.tokenizer = None
|
188 |
+
self.embedding_matrix = None
|
189 |
+
self.vocab_size = 0
|
190 |
+
self.model = None
|
191 |
+
self.processed_texts = []
|
192 |
+
self.log_dir = log_dir
|
193 |
+
self.glove_model = None
|
194 |
+
self.gpt2_model = None
|
195 |
+
self.gpt2_tokenizer = None
|
196 |
+
|
197 |
+
self.load_models()
|
198 |
+
|
199 |
+
def create_tokenizer(self, texts: List[str]) -> None:
|
200 |
+
if not texts:
|
201 |
+
raise ValueError("Lista tekstów jest pusta lub None.")
|
202 |
+
|
203 |
+
self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
204 |
+
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
205 |
+
|
206 |
+
print("Tokenizacja zakończona. Liczba unikalnych tokenów:", len(self.tokenizer.get_vocab()))
|
207 |
+
|
208 |
+
def load_models(self):
|
209 |
+
print("Ładowanie modelu GloVe...")
|
210 |
+
self.glove_model = self.load_glove_model()
|
211 |
+
print("Model GloVe załadowany.")
|
212 |
+
|
213 |
+
print("Ładowanie modelu GPT-2...")
|
214 |
+
if not Path(self.gpt2_model_dir).exists():
|
215 |
+
print(f"Model GPT-2 ({self.model_name}) nie jest dostępny lokalnie. Pobieranie...")
|
216 |
+
self.gpt2_model = AutoModel.from_pretrained(self.model_name)
|
217 |
+
self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
218 |
+
self.gpt2_model.save_pretrained(self.gpt2_model_dir)
|
219 |
+
self.gpt2_tokenizer.save_pretrained(self.gpt2_model_dir)
|
220 |
+
else:
|
221 |
+
self.load_gpt2_model()
|
222 |
+
print("Model GPT-2 załadowany.")
|
223 |
+
|
224 |
+
def download_file(self, url, save_path):
|
225 |
+
response = requests.get(url, stream=True)
|
226 |
+
total_length = response.headers.get('content-length')
|
227 |
+
|
228 |
+
if total_length is None:
|
229 |
+
with open(save_path, 'wb') as f:
|
230 |
+
for chunk in response.iter_content(chunk_size=8192):
|
231 |
+
if chunk:
|
232 |
+
f.write(chunk)
|
233 |
+
else:
|
234 |
+
dl = 0
|
235 |
+
total_length = int(total_length)
|
236 |
+
with open(save_path, 'wb') as f:
|
237 |
+
for chunk in response.iter_content(chunk_size=8192):
|
238 |
+
if chunk:
|
239 |
+
dl += len(chunk)
|
240 |
+
f.write(chunk)
|
241 |
+
done = int(50 * dl / total_length)
|
242 |
+
print("\r[%s%s]" % ('=' * done, ' ' * (50-done)), end='')
|
243 |
+
|
244 |
+
def load_glove_model(self):
|
245 |
+
glove_file = "glove.6B.100d.txt"
|
246 |
+
if not os.path.exists(glove_file):
|
247 |
+
print(f"Plik {glove_file} nie został znaleziony. Rozpoczynam pobieranie...")
|
248 |
+
try:
|
249 |
+
url = "http://nlp.stanford.edu/data/glove.6B.zip"
|
250 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_zip:
|
251 |
+
self.download_file(url, tmp_zip.name)
|
252 |
+
with zipfile.ZipFile(tmp_zip.name) as zf:
|
253 |
+
zf.extractall('.')
|
254 |
+
glove_file = 'glove.6B.100d.txt'
|
255 |
+
print("Pobrano i wypakowano plik GloVe.")
|
256 |
+
except Exception as e:
|
257 |
+
print(f"Błąd podczas pobierania lub wypakowywania pliku GloVe: {e}")
|
258 |
+
return None
|
259 |
+
|
260 |
+
glove_model = {}
|
261 |
+
with open(glove_file, 'r', encoding='utf-8') as f:
|
262 |
+
for line in f:
|
263 |
+
split_line = line.split()
|
264 |
+
word = split_line[0]
|
265 |
+
embedding = np.array([float(val) for val in split_line[1:]])
|
266 |
+
glove_model[word] = embedding
|
267 |
+
|
268 |
+
return glove_model
|
269 |
+
|
270 |
+
def load_gpt2_model(self):
|
271 |
+
try:
|
272 |
+
self.gpt2_model = AutoModel.from_pretrained(self.model_name)
|
273 |
+
self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
274 |
+
print("Standardowy model GPT-2 załadowany pomyślnie.")
|
275 |
+
except Exception as e:
|
276 |
+
print(f"Błąd podczas wczytywania standardowego modelu GPT-2: {e}")
|
277 |
+
|
278 |
+
def preprocess_text(self, text_input):
|
279 |
+
if isinstance(text_input, bytes):
|
280 |
+
text = text_input.decode('utf-8')
|
281 |
+
elif isinstance(text_input, tf.Tensor):
|
282 |
+
text = text_input.numpy().decode('utf-8')
|
283 |
+
else:
|
284 |
+
text = text_input
|
285 |
+
|
286 |
+
tokens = word_tokenize(text)
|
287 |
+
if self.lowercase:
|
288 |
+
tokens = [token.lower() for token in tokens]
|
289 |
+
if self.lemmatize:
|
290 |
+
tokens = [lemmatizer.lemmatize(token) for token in tokens]
|
291 |
+
if self.handle_stop_words:
|
292 |
+
tokens = [token for token in tokens if token not in self.stop_words]
|
293 |
+
|
294 |
+
return ' '.join(tokens)
|
295 |
+
|
296 |
+
def create_embedding_matrix(self, vocab_size, embedding_dim=100):
|
297 |
+
embedding_matrix = np.zeros((vocab_size, embedding_dim))
|
298 |
+
missed_embeddings = 0
|
299 |
+
|
300 |
+
all_embeddings = np.stack(list(self.glove_model.values()))
|
301 |
+
mean_embedding = np.mean(all_embeddings, axis=0)
|
302 |
+
|
303 |
+
for word, idx in self.tokenizer.get_vocab().items():
|
304 |
+
embedding_vector = self.glove_model.get(word)
|
305 |
+
|
306 |
+
if embedding_vector is not None:
|
307 |
+
embedding_matrix[idx] = embedding_vector
|
308 |
+
else:
|
309 |
+
missed_embeddings += 1
|
310 |
+
embedding_matrix[idx] = mean_embedding
|
311 |
+
|
312 |
+
print(f"Liczba słów bez dostępnego wektora embeddingu: {missed_embeddings}")
|
313 |
+
|
314 |
+
return embedding_matrix
|
315 |
+
|
316 |
+
def create_sequences(self):
|
317 |
+
processed_texts, _ = self._load_and_preprocess_files(self.directory, ['.txt'])
|
318 |
+
|
319 |
+
self.create_tokenizer(processed_texts)
|
320 |
+
vocab_size = len(self.tokenizer.get_vocab())
|
321 |
+
embedding_matrix = self.create_embedding_matrix(vocab_size)
|
322 |
+
|
323 |
+
sequences = []
|
324 |
+
for text in processed_texts:
|
325 |
+
encoded = self.tokenizer.encode(text)
|
326 |
+
for i in range(1, len(encoded)):
|
327 |
+
input_seq = encoded[:i]
|
328 |
+
sequences.append(input_seq)
|
329 |
+
|
330 |
+
max_sequence_len = max([len(seq) for seq in sequences])
|
331 |
+
sequences = np.array(pad_sequences(sequences, maxlen=max_sequence_len, padding='pre'))
|
332 |
+
|
333 |
+
X, y = sequences[:, :-1], sequences[:, -1]
|
334 |
+
y = tf.keras.utils.to_categorical(y, num_classes=vocab_size)
|
335 |
+
|
336 |
+
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
|
337 |
+
|
338 |
+
return X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len
|
339 |
+
|
340 |
+
def _load_and_preprocess_files(self, directory, file_formats):
|
341 |
+
processed_texts = []
|
342 |
+
word_counts = {}
|
343 |
+
|
344 |
+
if not os.path.isdir(directory):
|
345 |
+
raise FileNotFoundError(f"Błąd: Podana ścieżka '{directory}' nie jest katalogiem.")
|
346 |
+
|
347 |
+
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and any(f.endswith(format) for format in file_formats)]
|
348 |
+
if not files:
|
349 |
+
raise FileNotFoundError("Brak plików w podanym formacie w katalogu.")
|
350 |
+
|
351 |
+
for file in files:
|
352 |
+
file_path = os.path.join(directory, file)
|
353 |
+
with open(file_path, "r", encoding='utf-8') as f:
|
354 |
+
lines = f.readlines()
|
355 |
+
if not lines:
|
356 |
+
print(f"Plik {file} jest pusty.")
|
357 |
+
continue
|
358 |
+
|
359 |
+
for line in lines:
|
360 |
+
processed_line = self.preprocess_text(line)
|
361 |
+
processed_texts.append(processed_line)
|
362 |
+
word_count = len(processed_line.split())
|
363 |
+
word_counts[file] = word_counts.get(file, 0) + word_count
|
364 |
+
print(f"Przetworzono plik: {file}, liczba słów: {word_count}")
|
365 |
+
|
366 |
+
if not processed_texts:
|
367 |
+
raise ValueError("Brak przetworzonych tekstów. Proszę sprawdzić zawartość katalogu.")
|
368 |
+
else:
|
369 |
+
print(f"Liczba przetworzonych tekstów: {len(processed_texts)}")
|
370 |
+
|
371 |
+
return processed_texts, word_counts
|
372 |
+
|
373 |
+
def create_and_train_model(self):
|
374 |
+
X_train, X_val, y_train, y_val, embedding_matrix, vocab_size, max_sequence_len = self.create_sequences()
|
375 |
+
|
376 |
+
model = Sequential()
|
377 |
+
model.add(Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=max_sequence_len - 1, trainable=False))
|
378 |
+
model.add(Bidirectional(LSTM(self.lstm_units)))
|
379 |
+
model.add(Dropout(self.dropout_rate))
|
380 |
+
model.add(Dense(vocab_size, activation='softmax'))
|
381 |
+
|
382 |
+
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
383 |
+
model.summary()
|
384 |
+
|
385 |
+
log_dir = os.path.join(KATALOG_LOGOW, self.model_name)
|
386 |
+
tensorboard_callback = TensorBoard(log_dir=log_dir)
|
387 |
+
|
388 |
+
early_stopping_callback = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
389 |
+
|
390 |
+
model.fit(X_train, y_train, epochs=self.epochs, validation_data=(X_val, y_val), callbacks=[tensorboard_callback, early_stopping_callback])
|
391 |
+
|
392 |
+
self.model = model
|
393 |
+
self.save_model_and_tokenizer()
|
394 |
+
|
395 |
+
def save_model_and_tokenizer(self):
|
396 |
+
if not os.path.exists(ZAPISZ_KATALOG):
|
397 |
+
os.makedirs(ZAPISZ_KATALOG)
|
398 |
+
self.model.save(f'{ZAPISZ_KATALOG}/{self.model_name}.h5')
|
399 |
+
with open(f'{ZAPISZ_KATALOG}/{self.model_name}_tokenizer.pkl', 'wb') as handle:
|
400 |
+
pickle.dump(self.tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
401 |
+
print("Model i tokenizer zapisane.")
|
402 |
+
|
403 |
+
def main():
|
404 |
+
print("Witaj w AI Code Generator!")
|
405 |
+
directory = "test"
|
406 |
+
model_name = input("Podaj nazwę modelu: ")
|
407 |
+
|
408 |
+
processor = TextProcessor(
|
409 |
+
directory=directory,
|
410 |
+
model_name=model_name,
|
411 |
+
input_sequence_length=100,
|
412 |
+
output_sequence_length=100,
|
413 |
+
epochs=10,
|
414 |
+
)
|
415 |
+
|
416 |
+
processor.create_and_train_model()
|
417 |
+
print("Model utworzony i wytrenowany pomyślnie!")
|
418 |
+
|
419 |
+
if __name__ == "__main__":
|
420 |
+
main()
|