Spaces:
Runtime error
Runtime error
Delete app.py
#11
by
sjadhhelp
- opened
app.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import plotly.graph_objects as go
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from tqdm.auto import tqdm
|
6 |
-
|
7 |
-
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
|
8 |
-
from point_e.diffusion.sampler import PointCloudSampler
|
9 |
-
from point_e.models.download import load_checkpoint
|
10 |
-
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
11 |
-
from point_e.util.plotting import plot_point_cloud
|
12 |
-
|
13 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
-
|
15 |
-
print('creating base model...')
|
16 |
-
base_name = 'base40M-textvec'
|
17 |
-
base_model = model_from_config(MODEL_CONFIGS[base_name], device)
|
18 |
-
base_model.eval()
|
19 |
-
base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
|
20 |
-
|
21 |
-
print('creating upsample model...')
|
22 |
-
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
23 |
-
upsampler_model.eval()
|
24 |
-
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
25 |
-
|
26 |
-
print('downloading base checkpoint...')
|
27 |
-
base_model.load_state_dict(load_checkpoint(base_name, device))
|
28 |
-
|
29 |
-
print('downloading upsampler checkpoint...')
|
30 |
-
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
31 |
-
|
32 |
-
sampler = PointCloudSampler(
|
33 |
-
device=device,
|
34 |
-
models=[base_model, upsampler_model],
|
35 |
-
diffusions=[base_diffusion, upsampler_diffusion],
|
36 |
-
num_points=[1024, 4096 - 1024],
|
37 |
-
aux_channels=['R', 'G', 'B'],
|
38 |
-
guidance_scale=[3.0, 0.0],
|
39 |
-
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
|
40 |
-
)
|
41 |
-
|
42 |
-
def inference(prompt):
|
43 |
-
samples = None
|
44 |
-
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])):
|
45 |
-
samples = x
|
46 |
-
pc = sampler.output_to_point_clouds(samples)[0]
|
47 |
-
pc = sampler.output_to_point_clouds(samples)[0]
|
48 |
-
colors=(238, 75, 43)
|
49 |
-
fig = go.Figure(
|
50 |
-
data=[
|
51 |
-
go.Scatter3d(
|
52 |
-
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
|
53 |
-
mode='markers',
|
54 |
-
marker=dict(
|
55 |
-
size=2,
|
56 |
-
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
|
57 |
-
)
|
58 |
-
)
|
59 |
-
],
|
60 |
-
layout=dict(
|
61 |
-
scene=dict(
|
62 |
-
xaxis=dict(visible=False),
|
63 |
-
yaxis=dict(visible=False),
|
64 |
-
zaxis=dict(visible=False)
|
65 |
-
)
|
66 |
-
),
|
67 |
-
)
|
68 |
-
return fig
|
69 |
-
|
70 |
-
demo = gr.Interface(
|
71 |
-
fn=inference,
|
72 |
-
inputs="text",
|
73 |
-
outputs=gr.Plot(),
|
74 |
-
examples=[
|
75 |
-
["a red motorcycle"],
|
76 |
-
["a RED pumpkin"],
|
77 |
-
["a yellow rubber duck"]
|
78 |
-
],
|
79 |
-
title="Point-E demo: text to 3D",
|
80 |
-
description="""Generated 3D Point Cloiuds with [Point-E](https://github.com/openai/point-e/tree/main). This demo uses a small, worse quality text-to-3D model to produce 3D point clouds directly from text descriptions.
|
81 |
-
Check out the [notebook](https://github.com/openai/point-e/blob/main/point_e/examples/text2pointcloud.ipynb).
|
82 |
-
"""
|
83 |
-
)
|
84 |
-
demo.queue(max_size=30)
|
85 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|