File size: 23,236 Bytes
c003417 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
# SPDX-License-Identifier: Apache-2.0
# coding: utf-8
import os
import mxnet as mx
import numpy as np
import math
import cv2
from multiprocessing import Pool
from itertools import repeat
from helper import nms, adjust_input, generate_bbox, detect_first_stage_warpper
try:
from itertools import izip as zip
except ImportError:
pass
class MtcnnDetector(object):
"""
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
see https://github.com/kpzhang93/MTCNN_face_detection_alignment
this is a mxnet version
"""
def __init__(self,
model_folder='.',
minsize = 20,
threshold = [0.6, 0.7, 0.8],
factor = 0.709,
num_worker = 1,
accurate_landmark = False,
ctx=mx.cpu()):
"""
Initialize the detector
Parameters:
----------
model_folder : string
path for the models
minsize : float number
minimal face to detect
threshold : float number
detect threshold for 3 stages
factor: float number
scale factor for image pyramid
num_worker: int number
number of processes we use for first stage
accurate_landmark: bool
use accurate landmark localization or not
"""
self.num_worker = num_worker
self.accurate_landmark = accurate_landmark
# load 4 models from folder
models = ['det1', 'det2', 'det3','det4']
models = [ os.path.join(model_folder, f) for f in models]
self.PNets = []
for i in range(num_worker):
workner_net = mx.model.FeedForward.load(models[0], 1, ctx=ctx)
self.PNets.append(workner_net)
self.RNet = mx.model.FeedForward.load(models[1], 1, ctx=ctx)
self.ONet = mx.model.FeedForward.load(models[2], 1, ctx=ctx)
self.LNet = mx.model.FeedForward.load(models[3], 1, ctx=ctx)
self.minsize = float(minsize)
self.factor = float(factor)
self.threshold = threshold
def convert_to_square(self, bbox):
"""
convert bbox to square
Parameters:
----------
bbox: numpy array , shape n x 5
input bbox
Returns:
-------
square bbox
"""
square_bbox = bbox.copy()
h = bbox[:, 3] - bbox[:, 1] + 1
w = bbox[:, 2] - bbox[:, 0] + 1
max_side = np.maximum(h,w)
square_bbox[:, 0] = bbox[:, 0] + w*0.5 - max_side*0.5
square_bbox[:, 1] = bbox[:, 1] + h*0.5 - max_side*0.5
square_bbox[:, 2] = square_bbox[:, 0] + max_side - 1
square_bbox[:, 3] = square_bbox[:, 1] + max_side - 1
return square_bbox
def calibrate_box(self, bbox, reg):
"""
calibrate bboxes
Parameters:
----------
bbox: numpy array, shape n x 5
input bboxes
reg: numpy array, shape n x 4
bboxex adjustment
Returns:
-------
bboxes after refinement
"""
w = bbox[:, 2] - bbox[:, 0] + 1
w = np.expand_dims(w, 1)
h = bbox[:, 3] - bbox[:, 1] + 1
h = np.expand_dims(h, 1)
reg_m = np.hstack([w, h, w, h])
aug = reg_m * reg
bbox[:, 0:4] = bbox[:, 0:4] + aug
return bbox
def pad(self, bboxes, w, h):
"""
pad the the bboxes, alse restrict the size of it
Parameters:
----------
bboxes: numpy array, n x 5
input bboxes
w: float number
width of the input image
h: float number
height of the input image
Returns :
------s
dy, dx : numpy array, n x 1
start point of the bbox in target image
edy, edx : numpy array, n x 1
end point of the bbox in target image
y, x : numpy array, n x 1
start point of the bbox in original image
ex, ex : numpy array, n x 1
end point of the bbox in original image
tmph, tmpw: numpy array, n x 1
height and width of the bbox
"""
tmpw, tmph = bboxes[:, 2] - bboxes[:, 0] + 1, bboxes[:, 3] - bboxes[:, 1] + 1
num_box = bboxes.shape[0]
dx , dy= np.zeros((num_box, )), np.zeros((num_box, ))
edx, edy = tmpw.copy()-1, tmph.copy()-1
x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
tmp_index = np.where(ex > w-1)
edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index]
ex[tmp_index] = w - 1
tmp_index = np.where(ey > h-1)
edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index]
ey[tmp_index] = h - 1
tmp_index = np.where(x < 0)
dx[tmp_index] = 0 - x[tmp_index]
x[tmp_index] = 0
tmp_index = np.where(y < 0)
dy[tmp_index] = 0 - y[tmp_index]
y[tmp_index] = 0
return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]
return_list = [item.astype(np.int32) for item in return_list]
return return_list
def slice_index(self, number):
"""
slice the index into (n,n,m), m < n
Parameters:
----------
number: int number
number
"""
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
num_list = range(number)
return list(chunks(num_list, self.num_worker))
def detect_face_limited(self, img, det_type=2):
height, width, _ = img.shape
if det_type>=2:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 24, 24) is the input shape for RNet
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
output = self.RNet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[1][:, 1] > self.threshold[1])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
reg = output[0][passed]
# nms
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick]
total_boxes = self.calibrate_box(total_boxes, reg[pick])
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
else:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
num_box = total_boxes.shape[0]
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 48, 48) is the input shape for ONet
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
output = self.ONet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[2][:, 1] > self.threshold[2])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
reg = output[1][passed]
points = output[0][passed]
# compute landmark points
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
# nms
total_boxes = self.calibrate_box(total_boxes, reg)
pick = nms(total_boxes, 0.7, 'Min')
total_boxes = total_boxes[pick]
points = points[pick]
if not self.accurate_landmark:
return total_boxes, points
#############################################
# extended stage
#############################################
num_box = total_boxes.shape[0]
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
patchw = np.round(patchw*0.25)
# make it even
patchw[np.where(np.mod(patchw,2) == 1)] += 1
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
for i in range(5):
x, y = points[:, i], points[:, i+5]
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
width,
height)
for j in range(num_box):
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
output = self.LNet.predict(input_buf)
pointx = np.zeros((num_box, 5))
pointy = np.zeros((num_box, 5))
for k in range(5):
# do not make a large movement
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
output[k][tmp_index[0]] = 0.5
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
points = np.hstack([pointx, pointy])
points = points.astype(np.int32)
return total_boxes, points
def detect_face(self, img, det_type=0):
"""
detect face over img
Parameters:
----------
img: numpy array, bgr order of shape (1, 3, n, m)
input image
Retures:
-------
bboxes: numpy array, n x 5 (x1,y2,x2,y2,score)
bboxes
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
landmarks
"""
# check input
height, width, _ = img.shape
if det_type==0:
MIN_DET_SIZE = 12
if img is None:
return None
# only works for color image
if len(img.shape) != 3:
return None
# detected boxes
total_boxes = []
minl = min( height, width)
# get all the valid scales
scales = []
m = MIN_DET_SIZE/self.minsize
minl *= m
factor_count = 0
while minl > MIN_DET_SIZE:
scales.append(m*self.factor**factor_count)
minl *= self.factor
factor_count += 1
#############################################
# first stage
#############################################
sliced_index = self.slice_index(len(scales))
total_boxes = []
for batch in sliced_index:
local_boxes = map( detect_first_stage_warpper, \
zip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
total_boxes.extend(local_boxes)
# remove the Nones
total_boxes = [ i for i in total_boxes if i is not None]
if len(total_boxes) == 0:
return None
total_boxes = np.vstack(total_boxes)
if total_boxes.size == 0:
return None
# merge the detection from first stage
pick = nms(total_boxes[:, 0:5], 0.7, 'Union')
total_boxes = total_boxes[pick]
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
# refine the bboxes
total_boxes = np.vstack([total_boxes[:, 0]+total_boxes[:, 5] * bbw,
total_boxes[:, 1]+total_boxes[:, 6] * bbh,
total_boxes[:, 2]+total_boxes[:, 7] * bbw,
total_boxes[:, 3]+total_boxes[:, 8] * bbh,
total_boxes[:, 4]
])
total_boxes = total_boxes.T
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
else:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
#############################################
# second stage
#############################################
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 24, 24) is the input shape for RNet
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
output = self.RNet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[1][:, 1] > self.threshold[1])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
reg = output[0][passed]
# nms
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick]
total_boxes = self.calibrate_box(total_boxes, reg[pick])
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
#############################################
# third stage
#############################################
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 48, 48) is the input shape for ONet
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
output = self.ONet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[2][:, 1] > self.threshold[2])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
reg = output[1][passed]
points = output[0][passed]
# compute landmark points
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
# nms
total_boxes = self.calibrate_box(total_boxes, reg)
pick = nms(total_boxes, 0.7, 'Min')
total_boxes = total_boxes[pick]
points = points[pick]
if not self.accurate_landmark:
return total_boxes, points
#############################################
# extended stage
#############################################
num_box = total_boxes.shape[0]
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
patchw = np.round(patchw*0.25)
# make it even
patchw[np.where(np.mod(patchw,2) == 1)] += 1
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
for i in range(5):
x, y = points[:, i], points[:, i+5]
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
width,
height)
for j in range(num_box):
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
output = self.LNet.predict(input_buf)
pointx = np.zeros((num_box, 5))
pointy = np.zeros((num_box, 5))
for k in range(5):
# do not make a large movement
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
output[k][tmp_index[0]] = 0.5
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
points = np.hstack([pointx, pointy])
points = points.astype(np.int32)
return total_boxes, points
def list2colmatrix(self, pts_list):
"""
convert list to column matrix
Parameters:
----------
pts_list:
input list
Retures:
-------
colMat:
"""
assert len(pts_list) > 0
colMat = []
for i in range(len(pts_list)):
colMat.append(pts_list[i][0])
colMat.append(pts_list[i][1])
colMat = np.matrix(colMat).transpose()
return colMat
def find_tfrom_between_shapes(self, from_shape, to_shape):
"""
find transform between shapes
Parameters:
----------
from_shape:
to_shape:
Retures:
-------
tran_m:
tran_b:
"""
assert from_shape.shape[0] == to_shape.shape[0] and from_shape.shape[0] % 2 == 0
sigma_from = 0.0
sigma_to = 0.0
cov = np.matrix([[0.0, 0.0], [0.0, 0.0]])
# compute the mean and cov
from_shape_points = from_shape.reshape(from_shape.shape[0]/2, 2)
to_shape_points = to_shape.reshape(to_shape.shape[0]/2, 2)
mean_from = from_shape_points.mean(axis=0)
mean_to = to_shape_points.mean(axis=0)
for i in range(from_shape_points.shape[0]):
temp_dis = np.linalg.norm(from_shape_points[i] - mean_from)
sigma_from += temp_dis * temp_dis
temp_dis = np.linalg.norm(to_shape_points[i] - mean_to)
sigma_to += temp_dis * temp_dis
cov += (to_shape_points[i].transpose() - mean_to.transpose()) * (from_shape_points[i] - mean_from)
sigma_from = sigma_from / to_shape_points.shape[0]
sigma_to = sigma_to / to_shape_points.shape[0]
cov = cov / to_shape_points.shape[0]
# compute the affine matrix
s = np.matrix([[1.0, 0.0], [0.0, 1.0]])
u, d, vt = np.linalg.svd(cov)
if np.linalg.det(cov) < 0:
if d[1] < d[0]:
s[1, 1] = -1
else:
s[0, 0] = -1
r = u * s * vt
c = 1.0
if sigma_from != 0:
c = 1.0 / sigma_from * np.trace(np.diag(d) * s)
tran_b = mean_to.transpose() - c * r * mean_from.transpose()
tran_m = c * r
return tran_m, tran_b
def extract_image_chips(self, img, points, desired_size=256, padding=0):
"""
crop and align face
Parameters:
----------
img: numpy array, bgr order of shape (1, 3, n, m)
input image
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
desired_size: default 256
padding: default 0
Retures:
-------
crop_imgs: list, n
cropped and aligned faces
"""
crop_imgs = []
for p in points:
shape =[]
for k in range(len(p)/2):
shape.append(p[k])
shape.append(p[k+5])
if padding > 0:
padding = padding
else:
padding = 0
# average positions of face points
mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104]
mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233]
from_points = []
to_points = []
for i in range(len(shape)/2):
x = (padding + mean_face_shape_x[i]) / (2 * padding + 1) * desired_size
y = (padding + mean_face_shape_y[i]) / (2 * padding + 1) * desired_size
to_points.append([x, y])
from_points.append([shape[2*i], shape[2*i+1]])
# convert the points to Mat
from_mat = self.list2colmatrix(from_points)
to_mat = self.list2colmatrix(to_points)
# compute the similar transfrom
tran_m, tran_b = self.find_tfrom_between_shapes(from_mat, to_mat)
probe_vec = np.matrix([1.0, 0.0]).transpose()
probe_vec = tran_m * probe_vec
scale = np.linalg.norm(probe_vec)
angle = 180.0 / math.pi * math.atan2(probe_vec[1, 0], probe_vec[0, 0])
from_center = [(shape[0]+shape[2])/2.0, (shape[1]+shape[3])/2.0]
to_center = [0, 0]
to_center[1] = desired_size * 0.4
to_center[0] = desired_size * 0.5
ex = to_center[0] - from_center[0]
ey = to_center[1] - from_center[1]
rot_mat = cv2.getRotationMatrix2D((from_center[0], from_center[1]), -1*angle, scale)
rot_mat[0][2] += ex
rot_mat[1][2] += ey
chips = cv2.warpAffine(img, rot_mat, (desired_size, desired_size))
crop_imgs.append(chips)
return crop_imgs |