Create mtcnn_detector.py
Browse files- mtcnn_detector.py +650 -0
mtcnn_detector.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: Apache-2.0
|
2 |
+
|
3 |
+
# coding: utf-8
|
4 |
+
import os
|
5 |
+
import mxnet as mx
|
6 |
+
import numpy as np
|
7 |
+
import math
|
8 |
+
import cv2
|
9 |
+
from multiprocessing import Pool
|
10 |
+
from itertools import repeat
|
11 |
+
from helper import nms, adjust_input, generate_bbox, detect_first_stage_warpper
|
12 |
+
try:
|
13 |
+
from itertools import izip as zip
|
14 |
+
except ImportError:
|
15 |
+
pass
|
16 |
+
|
17 |
+
class MtcnnDetector(object):
|
18 |
+
"""
|
19 |
+
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
|
20 |
+
see https://github.com/kpzhang93/MTCNN_face_detection_alignment
|
21 |
+
this is a mxnet version
|
22 |
+
"""
|
23 |
+
def __init__(self,
|
24 |
+
model_folder='.',
|
25 |
+
minsize = 20,
|
26 |
+
threshold = [0.6, 0.7, 0.8],
|
27 |
+
factor = 0.709,
|
28 |
+
num_worker = 1,
|
29 |
+
accurate_landmark = False,
|
30 |
+
ctx=mx.cpu()):
|
31 |
+
"""
|
32 |
+
Initialize the detector
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
----------
|
36 |
+
model_folder : string
|
37 |
+
path for the models
|
38 |
+
minsize : float number
|
39 |
+
minimal face to detect
|
40 |
+
threshold : float number
|
41 |
+
detect threshold for 3 stages
|
42 |
+
factor: float number
|
43 |
+
scale factor for image pyramid
|
44 |
+
num_worker: int number
|
45 |
+
number of processes we use for first stage
|
46 |
+
accurate_landmark: bool
|
47 |
+
use accurate landmark localization or not
|
48 |
+
|
49 |
+
"""
|
50 |
+
self.num_worker = num_worker
|
51 |
+
self.accurate_landmark = accurate_landmark
|
52 |
+
|
53 |
+
# load 4 models from folder
|
54 |
+
models = ['det1', 'det2', 'det3','det4']
|
55 |
+
models = [ os.path.join(model_folder, f) for f in models]
|
56 |
+
|
57 |
+
self.PNets = []
|
58 |
+
for i in range(num_worker):
|
59 |
+
workner_net = mx.model.FeedForward.load(models[0], 1, ctx=ctx)
|
60 |
+
self.PNets.append(workner_net)
|
61 |
+
|
62 |
+
self.RNet = mx.model.FeedForward.load(models[1], 1, ctx=ctx)
|
63 |
+
self.ONet = mx.model.FeedForward.load(models[2], 1, ctx=ctx)
|
64 |
+
self.LNet = mx.model.FeedForward.load(models[3], 1, ctx=ctx)
|
65 |
+
|
66 |
+
self.minsize = float(minsize)
|
67 |
+
self.factor = float(factor)
|
68 |
+
self.threshold = threshold
|
69 |
+
|
70 |
+
|
71 |
+
def convert_to_square(self, bbox):
|
72 |
+
"""
|
73 |
+
convert bbox to square
|
74 |
+
|
75 |
+
Parameters:
|
76 |
+
----------
|
77 |
+
bbox: numpy array , shape n x 5
|
78 |
+
input bbox
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
-------
|
82 |
+
square bbox
|
83 |
+
"""
|
84 |
+
square_bbox = bbox.copy()
|
85 |
+
|
86 |
+
h = bbox[:, 3] - bbox[:, 1] + 1
|
87 |
+
w = bbox[:, 2] - bbox[:, 0] + 1
|
88 |
+
max_side = np.maximum(h,w)
|
89 |
+
square_bbox[:, 0] = bbox[:, 0] + w*0.5 - max_side*0.5
|
90 |
+
square_bbox[:, 1] = bbox[:, 1] + h*0.5 - max_side*0.5
|
91 |
+
square_bbox[:, 2] = square_bbox[:, 0] + max_side - 1
|
92 |
+
square_bbox[:, 3] = square_bbox[:, 1] + max_side - 1
|
93 |
+
return square_bbox
|
94 |
+
|
95 |
+
def calibrate_box(self, bbox, reg):
|
96 |
+
"""
|
97 |
+
calibrate bboxes
|
98 |
+
|
99 |
+
Parameters:
|
100 |
+
----------
|
101 |
+
bbox: numpy array, shape n x 5
|
102 |
+
input bboxes
|
103 |
+
reg: numpy array, shape n x 4
|
104 |
+
bboxex adjustment
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
-------
|
108 |
+
bboxes after refinement
|
109 |
+
|
110 |
+
"""
|
111 |
+
w = bbox[:, 2] - bbox[:, 0] + 1
|
112 |
+
w = np.expand_dims(w, 1)
|
113 |
+
h = bbox[:, 3] - bbox[:, 1] + 1
|
114 |
+
h = np.expand_dims(h, 1)
|
115 |
+
reg_m = np.hstack([w, h, w, h])
|
116 |
+
aug = reg_m * reg
|
117 |
+
bbox[:, 0:4] = bbox[:, 0:4] + aug
|
118 |
+
return bbox
|
119 |
+
|
120 |
+
|
121 |
+
def pad(self, bboxes, w, h):
|
122 |
+
"""
|
123 |
+
pad the the bboxes, alse restrict the size of it
|
124 |
+
|
125 |
+
Parameters:
|
126 |
+
----------
|
127 |
+
bboxes: numpy array, n x 5
|
128 |
+
input bboxes
|
129 |
+
w: float number
|
130 |
+
width of the input image
|
131 |
+
h: float number
|
132 |
+
height of the input image
|
133 |
+
Returns :
|
134 |
+
------s
|
135 |
+
dy, dx : numpy array, n x 1
|
136 |
+
start point of the bbox in target image
|
137 |
+
edy, edx : numpy array, n x 1
|
138 |
+
end point of the bbox in target image
|
139 |
+
y, x : numpy array, n x 1
|
140 |
+
start point of the bbox in original image
|
141 |
+
ex, ex : numpy array, n x 1
|
142 |
+
end point of the bbox in original image
|
143 |
+
tmph, tmpw: numpy array, n x 1
|
144 |
+
height and width of the bbox
|
145 |
+
|
146 |
+
"""
|
147 |
+
tmpw, tmph = bboxes[:, 2] - bboxes[:, 0] + 1, bboxes[:, 3] - bboxes[:, 1] + 1
|
148 |
+
num_box = bboxes.shape[0]
|
149 |
+
|
150 |
+
dx , dy= np.zeros((num_box, )), np.zeros((num_box, ))
|
151 |
+
edx, edy = tmpw.copy()-1, tmph.copy()-1
|
152 |
+
|
153 |
+
x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
|
154 |
+
|
155 |
+
tmp_index = np.where(ex > w-1)
|
156 |
+
edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index]
|
157 |
+
ex[tmp_index] = w - 1
|
158 |
+
|
159 |
+
tmp_index = np.where(ey > h-1)
|
160 |
+
edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index]
|
161 |
+
ey[tmp_index] = h - 1
|
162 |
+
|
163 |
+
tmp_index = np.where(x < 0)
|
164 |
+
dx[tmp_index] = 0 - x[tmp_index]
|
165 |
+
x[tmp_index] = 0
|
166 |
+
|
167 |
+
tmp_index = np.where(y < 0)
|
168 |
+
dy[tmp_index] = 0 - y[tmp_index]
|
169 |
+
y[tmp_index] = 0
|
170 |
+
|
171 |
+
return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]
|
172 |
+
return_list = [item.astype(np.int32) for item in return_list]
|
173 |
+
|
174 |
+
return return_list
|
175 |
+
|
176 |
+
def slice_index(self, number):
|
177 |
+
"""
|
178 |
+
slice the index into (n,n,m), m < n
|
179 |
+
Parameters:
|
180 |
+
----------
|
181 |
+
number: int number
|
182 |
+
number
|
183 |
+
"""
|
184 |
+
def chunks(l, n):
|
185 |
+
"""Yield successive n-sized chunks from l."""
|
186 |
+
for i in range(0, len(l), n):
|
187 |
+
yield l[i:i + n]
|
188 |
+
num_list = range(number)
|
189 |
+
return list(chunks(num_list, self.num_worker))
|
190 |
+
|
191 |
+
def detect_face_limited(self, img, det_type=2):
|
192 |
+
height, width, _ = img.shape
|
193 |
+
if det_type>=2:
|
194 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
195 |
+
num_box = total_boxes.shape[0]
|
196 |
+
|
197 |
+
# pad the bbox
|
198 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
199 |
+
# (3, 24, 24) is the input shape for RNet
|
200 |
+
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
|
201 |
+
|
202 |
+
for i in range(num_box):
|
203 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
|
204 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
205 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
|
206 |
+
|
207 |
+
output = self.RNet.predict(input_buf)
|
208 |
+
|
209 |
+
# filter the total_boxes with threshold
|
210 |
+
passed = np.where(output[1][:, 1] > self.threshold[1])
|
211 |
+
total_boxes = total_boxes[passed]
|
212 |
+
|
213 |
+
if total_boxes.size == 0:
|
214 |
+
return None
|
215 |
+
|
216 |
+
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
|
217 |
+
reg = output[0][passed]
|
218 |
+
|
219 |
+
# nms
|
220 |
+
pick = nms(total_boxes, 0.7, 'Union')
|
221 |
+
total_boxes = total_boxes[pick]
|
222 |
+
total_boxes = self.calibrate_box(total_boxes, reg[pick])
|
223 |
+
total_boxes = self.convert_to_square(total_boxes)
|
224 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
225 |
+
else:
|
226 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
227 |
+
num_box = total_boxes.shape[0]
|
228 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
229 |
+
# (3, 48, 48) is the input shape for ONet
|
230 |
+
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
|
231 |
+
|
232 |
+
for i in range(num_box):
|
233 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
|
234 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
235 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
|
236 |
+
|
237 |
+
output = self.ONet.predict(input_buf)
|
238 |
+
|
239 |
+
# filter the total_boxes with threshold
|
240 |
+
passed = np.where(output[2][:, 1] > self.threshold[2])
|
241 |
+
total_boxes = total_boxes[passed]
|
242 |
+
|
243 |
+
if total_boxes.size == 0:
|
244 |
+
return None
|
245 |
+
|
246 |
+
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
|
247 |
+
reg = output[1][passed]
|
248 |
+
points = output[0][passed]
|
249 |
+
|
250 |
+
# compute landmark points
|
251 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
252 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
253 |
+
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
|
254 |
+
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
|
255 |
+
|
256 |
+
# nms
|
257 |
+
total_boxes = self.calibrate_box(total_boxes, reg)
|
258 |
+
pick = nms(total_boxes, 0.7, 'Min')
|
259 |
+
total_boxes = total_boxes[pick]
|
260 |
+
points = points[pick]
|
261 |
+
|
262 |
+
if not self.accurate_landmark:
|
263 |
+
return total_boxes, points
|
264 |
+
|
265 |
+
#############################################
|
266 |
+
# extended stage
|
267 |
+
#############################################
|
268 |
+
num_box = total_boxes.shape[0]
|
269 |
+
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
|
270 |
+
patchw = np.round(patchw*0.25)
|
271 |
+
|
272 |
+
# make it even
|
273 |
+
patchw[np.where(np.mod(patchw,2) == 1)] += 1
|
274 |
+
|
275 |
+
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
|
276 |
+
for i in range(5):
|
277 |
+
x, y = points[:, i], points[:, i+5]
|
278 |
+
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
|
279 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
|
280 |
+
width,
|
281 |
+
height)
|
282 |
+
for j in range(num_box):
|
283 |
+
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
|
284 |
+
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
|
285 |
+
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
|
286 |
+
|
287 |
+
output = self.LNet.predict(input_buf)
|
288 |
+
|
289 |
+
pointx = np.zeros((num_box, 5))
|
290 |
+
pointy = np.zeros((num_box, 5))
|
291 |
+
|
292 |
+
for k in range(5):
|
293 |
+
# do not make a large movement
|
294 |
+
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
|
295 |
+
output[k][tmp_index[0]] = 0.5
|
296 |
+
|
297 |
+
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
|
298 |
+
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
|
299 |
+
|
300 |
+
points = np.hstack([pointx, pointy])
|
301 |
+
points = points.astype(np.int32)
|
302 |
+
|
303 |
+
return total_boxes, points
|
304 |
+
|
305 |
+
def detect_face(self, img, det_type=0):
|
306 |
+
"""
|
307 |
+
detect face over img
|
308 |
+
Parameters:
|
309 |
+
----------
|
310 |
+
img: numpy array, bgr order of shape (1, 3, n, m)
|
311 |
+
input image
|
312 |
+
Retures:
|
313 |
+
-------
|
314 |
+
bboxes: numpy array, n x 5 (x1,y2,x2,y2,score)
|
315 |
+
bboxes
|
316 |
+
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
|
317 |
+
landmarks
|
318 |
+
"""
|
319 |
+
|
320 |
+
# check input
|
321 |
+
height, width, _ = img.shape
|
322 |
+
if det_type==0:
|
323 |
+
MIN_DET_SIZE = 12
|
324 |
+
|
325 |
+
if img is None:
|
326 |
+
return None
|
327 |
+
|
328 |
+
# only works for color image
|
329 |
+
if len(img.shape) != 3:
|
330 |
+
return None
|
331 |
+
|
332 |
+
# detected boxes
|
333 |
+
total_boxes = []
|
334 |
+
|
335 |
+
minl = min( height, width)
|
336 |
+
|
337 |
+
# get all the valid scales
|
338 |
+
scales = []
|
339 |
+
m = MIN_DET_SIZE/self.minsize
|
340 |
+
minl *= m
|
341 |
+
factor_count = 0
|
342 |
+
while minl > MIN_DET_SIZE:
|
343 |
+
scales.append(m*self.factor**factor_count)
|
344 |
+
minl *= self.factor
|
345 |
+
factor_count += 1
|
346 |
+
|
347 |
+
#############################################
|
348 |
+
# first stage
|
349 |
+
#############################################
|
350 |
+
|
351 |
+
sliced_index = self.slice_index(len(scales))
|
352 |
+
total_boxes = []
|
353 |
+
for batch in sliced_index:
|
354 |
+
local_boxes = map( detect_first_stage_warpper, \
|
355 |
+
zip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
|
356 |
+
total_boxes.extend(local_boxes)
|
357 |
+
|
358 |
+
# remove the Nones
|
359 |
+
total_boxes = [ i for i in total_boxes if i is not None]
|
360 |
+
|
361 |
+
if len(total_boxes) == 0:
|
362 |
+
return None
|
363 |
+
|
364 |
+
total_boxes = np.vstack(total_boxes)
|
365 |
+
|
366 |
+
if total_boxes.size == 0:
|
367 |
+
return None
|
368 |
+
|
369 |
+
# merge the detection from first stage
|
370 |
+
pick = nms(total_boxes[:, 0:5], 0.7, 'Union')
|
371 |
+
total_boxes = total_boxes[pick]
|
372 |
+
|
373 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
374 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
375 |
+
|
376 |
+
# refine the bboxes
|
377 |
+
total_boxes = np.vstack([total_boxes[:, 0]+total_boxes[:, 5] * bbw,
|
378 |
+
total_boxes[:, 1]+total_boxes[:, 6] * bbh,
|
379 |
+
total_boxes[:, 2]+total_boxes[:, 7] * bbw,
|
380 |
+
total_boxes[:, 3]+total_boxes[:, 8] * bbh,
|
381 |
+
total_boxes[:, 4]
|
382 |
+
])
|
383 |
+
|
384 |
+
total_boxes = total_boxes.T
|
385 |
+
total_boxes = self.convert_to_square(total_boxes)
|
386 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
387 |
+
else:
|
388 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
389 |
+
|
390 |
+
#############################################
|
391 |
+
# second stage
|
392 |
+
#############################################
|
393 |
+
num_box = total_boxes.shape[0]
|
394 |
+
|
395 |
+
# pad the bbox
|
396 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
397 |
+
# (3, 24, 24) is the input shape for RNet
|
398 |
+
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
|
399 |
+
|
400 |
+
for i in range(num_box):
|
401 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
|
402 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
403 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
|
404 |
+
|
405 |
+
output = self.RNet.predict(input_buf)
|
406 |
+
|
407 |
+
# filter the total_boxes with threshold
|
408 |
+
passed = np.where(output[1][:, 1] > self.threshold[1])
|
409 |
+
total_boxes = total_boxes[passed]
|
410 |
+
|
411 |
+
if total_boxes.size == 0:
|
412 |
+
return None
|
413 |
+
|
414 |
+
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
|
415 |
+
reg = output[0][passed]
|
416 |
+
|
417 |
+
# nms
|
418 |
+
pick = nms(total_boxes, 0.7, 'Union')
|
419 |
+
total_boxes = total_boxes[pick]
|
420 |
+
total_boxes = self.calibrate_box(total_boxes, reg[pick])
|
421 |
+
total_boxes = self.convert_to_square(total_boxes)
|
422 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
423 |
+
|
424 |
+
#############################################
|
425 |
+
# third stage
|
426 |
+
#############################################
|
427 |
+
num_box = total_boxes.shape[0]
|
428 |
+
|
429 |
+
# pad the bbox
|
430 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
431 |
+
# (3, 48, 48) is the input shape for ONet
|
432 |
+
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
|
433 |
+
|
434 |
+
for i in range(num_box):
|
435 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
|
436 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
437 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
|
438 |
+
|
439 |
+
output = self.ONet.predict(input_buf)
|
440 |
+
|
441 |
+
# filter the total_boxes with threshold
|
442 |
+
passed = np.where(output[2][:, 1] > self.threshold[2])
|
443 |
+
total_boxes = total_boxes[passed]
|
444 |
+
|
445 |
+
if total_boxes.size == 0:
|
446 |
+
return None
|
447 |
+
|
448 |
+
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
|
449 |
+
reg = output[1][passed]
|
450 |
+
points = output[0][passed]
|
451 |
+
|
452 |
+
# compute landmark points
|
453 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
454 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
455 |
+
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
|
456 |
+
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
|
457 |
+
|
458 |
+
# nms
|
459 |
+
total_boxes = self.calibrate_box(total_boxes, reg)
|
460 |
+
pick = nms(total_boxes, 0.7, 'Min')
|
461 |
+
total_boxes = total_boxes[pick]
|
462 |
+
points = points[pick]
|
463 |
+
|
464 |
+
if not self.accurate_landmark:
|
465 |
+
return total_boxes, points
|
466 |
+
|
467 |
+
#############################################
|
468 |
+
# extended stage
|
469 |
+
#############################################
|
470 |
+
num_box = total_boxes.shape[0]
|
471 |
+
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
|
472 |
+
patchw = np.round(patchw*0.25)
|
473 |
+
|
474 |
+
# make it even
|
475 |
+
patchw[np.where(np.mod(patchw,2) == 1)] += 1
|
476 |
+
|
477 |
+
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
|
478 |
+
for i in range(5):
|
479 |
+
x, y = points[:, i], points[:, i+5]
|
480 |
+
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
|
481 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
|
482 |
+
width,
|
483 |
+
height)
|
484 |
+
for j in range(num_box):
|
485 |
+
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
|
486 |
+
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
|
487 |
+
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
|
488 |
+
|
489 |
+
output = self.LNet.predict(input_buf)
|
490 |
+
|
491 |
+
pointx = np.zeros((num_box, 5))
|
492 |
+
pointy = np.zeros((num_box, 5))
|
493 |
+
|
494 |
+
for k in range(5):
|
495 |
+
# do not make a large movement
|
496 |
+
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
|
497 |
+
output[k][tmp_index[0]] = 0.5
|
498 |
+
|
499 |
+
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
|
500 |
+
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
|
501 |
+
|
502 |
+
points = np.hstack([pointx, pointy])
|
503 |
+
points = points.astype(np.int32)
|
504 |
+
|
505 |
+
return total_boxes, points
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
def list2colmatrix(self, pts_list):
|
510 |
+
"""
|
511 |
+
convert list to column matrix
|
512 |
+
Parameters:
|
513 |
+
----------
|
514 |
+
pts_list:
|
515 |
+
input list
|
516 |
+
Retures:
|
517 |
+
-------
|
518 |
+
colMat:
|
519 |
+
|
520 |
+
"""
|
521 |
+
assert len(pts_list) > 0
|
522 |
+
colMat = []
|
523 |
+
for i in range(len(pts_list)):
|
524 |
+
colMat.append(pts_list[i][0])
|
525 |
+
colMat.append(pts_list[i][1])
|
526 |
+
colMat = np.matrix(colMat).transpose()
|
527 |
+
return colMat
|
528 |
+
|
529 |
+
def find_tfrom_between_shapes(self, from_shape, to_shape):
|
530 |
+
"""
|
531 |
+
find transform between shapes
|
532 |
+
Parameters:
|
533 |
+
----------
|
534 |
+
from_shape:
|
535 |
+
to_shape:
|
536 |
+
Retures:
|
537 |
+
-------
|
538 |
+
tran_m:
|
539 |
+
tran_b:
|
540 |
+
"""
|
541 |
+
assert from_shape.shape[0] == to_shape.shape[0] and from_shape.shape[0] % 2 == 0
|
542 |
+
|
543 |
+
sigma_from = 0.0
|
544 |
+
sigma_to = 0.0
|
545 |
+
cov = np.matrix([[0.0, 0.0], [0.0, 0.0]])
|
546 |
+
|
547 |
+
# compute the mean and cov
|
548 |
+
from_shape_points = from_shape.reshape(from_shape.shape[0]/2, 2)
|
549 |
+
to_shape_points = to_shape.reshape(to_shape.shape[0]/2, 2)
|
550 |
+
mean_from = from_shape_points.mean(axis=0)
|
551 |
+
mean_to = to_shape_points.mean(axis=0)
|
552 |
+
|
553 |
+
for i in range(from_shape_points.shape[0]):
|
554 |
+
temp_dis = np.linalg.norm(from_shape_points[i] - mean_from)
|
555 |
+
sigma_from += temp_dis * temp_dis
|
556 |
+
temp_dis = np.linalg.norm(to_shape_points[i] - mean_to)
|
557 |
+
sigma_to += temp_dis * temp_dis
|
558 |
+
cov += (to_shape_points[i].transpose() - mean_to.transpose()) * (from_shape_points[i] - mean_from)
|
559 |
+
|
560 |
+
sigma_from = sigma_from / to_shape_points.shape[0]
|
561 |
+
sigma_to = sigma_to / to_shape_points.shape[0]
|
562 |
+
cov = cov / to_shape_points.shape[0]
|
563 |
+
|
564 |
+
# compute the affine matrix
|
565 |
+
s = np.matrix([[1.0, 0.0], [0.0, 1.0]])
|
566 |
+
u, d, vt = np.linalg.svd(cov)
|
567 |
+
|
568 |
+
if np.linalg.det(cov) < 0:
|
569 |
+
if d[1] < d[0]:
|
570 |
+
s[1, 1] = -1
|
571 |
+
else:
|
572 |
+
s[0, 0] = -1
|
573 |
+
r = u * s * vt
|
574 |
+
c = 1.0
|
575 |
+
if sigma_from != 0:
|
576 |
+
c = 1.0 / sigma_from * np.trace(np.diag(d) * s)
|
577 |
+
|
578 |
+
tran_b = mean_to.transpose() - c * r * mean_from.transpose()
|
579 |
+
tran_m = c * r
|
580 |
+
|
581 |
+
return tran_m, tran_b
|
582 |
+
|
583 |
+
def extract_image_chips(self, img, points, desired_size=256, padding=0):
|
584 |
+
"""
|
585 |
+
crop and align face
|
586 |
+
Parameters:
|
587 |
+
----------
|
588 |
+
img: numpy array, bgr order of shape (1, 3, n, m)
|
589 |
+
input image
|
590 |
+
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
|
591 |
+
desired_size: default 256
|
592 |
+
padding: default 0
|
593 |
+
Retures:
|
594 |
+
-------
|
595 |
+
crop_imgs: list, n
|
596 |
+
cropped and aligned faces
|
597 |
+
"""
|
598 |
+
crop_imgs = []
|
599 |
+
for p in points:
|
600 |
+
shape =[]
|
601 |
+
for k in range(len(p)/2):
|
602 |
+
shape.append(p[k])
|
603 |
+
shape.append(p[k+5])
|
604 |
+
|
605 |
+
if padding > 0:
|
606 |
+
padding = padding
|
607 |
+
else:
|
608 |
+
padding = 0
|
609 |
+
# average positions of face points
|
610 |
+
mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104]
|
611 |
+
mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233]
|
612 |
+
|
613 |
+
from_points = []
|
614 |
+
to_points = []
|
615 |
+
|
616 |
+
for i in range(len(shape)/2):
|
617 |
+
x = (padding + mean_face_shape_x[i]) / (2 * padding + 1) * desired_size
|
618 |
+
y = (padding + mean_face_shape_y[i]) / (2 * padding + 1) * desired_size
|
619 |
+
to_points.append([x, y])
|
620 |
+
from_points.append([shape[2*i], shape[2*i+1]])
|
621 |
+
|
622 |
+
# convert the points to Mat
|
623 |
+
from_mat = self.list2colmatrix(from_points)
|
624 |
+
to_mat = self.list2colmatrix(to_points)
|
625 |
+
|
626 |
+
# compute the similar transfrom
|
627 |
+
tran_m, tran_b = self.find_tfrom_between_shapes(from_mat, to_mat)
|
628 |
+
|
629 |
+
probe_vec = np.matrix([1.0, 0.0]).transpose()
|
630 |
+
probe_vec = tran_m * probe_vec
|
631 |
+
|
632 |
+
scale = np.linalg.norm(probe_vec)
|
633 |
+
angle = 180.0 / math.pi * math.atan2(probe_vec[1, 0], probe_vec[0, 0])
|
634 |
+
|
635 |
+
from_center = [(shape[0]+shape[2])/2.0, (shape[1]+shape[3])/2.0]
|
636 |
+
to_center = [0, 0]
|
637 |
+
to_center[1] = desired_size * 0.4
|
638 |
+
to_center[0] = desired_size * 0.5
|
639 |
+
|
640 |
+
ex = to_center[0] - from_center[0]
|
641 |
+
ey = to_center[1] - from_center[1]
|
642 |
+
|
643 |
+
rot_mat = cv2.getRotationMatrix2D((from_center[0], from_center[1]), -1*angle, scale)
|
644 |
+
rot_mat[0][2] += ex
|
645 |
+
rot_mat[1][2] += ey
|
646 |
+
|
647 |
+
chips = cv2.warpAffine(img, rot_mat, (desired_size, desired_size))
|
648 |
+
crop_imgs.append(chips)
|
649 |
+
|
650 |
+
return crop_imgs
|