tldw / App_Function_Libraries /LLM_API_Calls_Local.py
oceansweep's picture
Upload 169 files
c5b0bb7 verified
raw
history blame
37.5 kB
# Local_Summarization_Lib.py
#########################################
# Local Summarization Library
# This library is used to perform summarization with a 'local' inference engine.
#
####
import logging
from typing import Union
####################
# Function List
# FIXME - UPDATE
# 1. chat_with_local_llm(text, custom_prompt_arg)
# 2. chat_with_llama(api_url, text, token, custom_prompt)
# 3. chat_with_kobold(api_url, text, kobold_api_token, custom_prompt)
# 4. chat_with_oobabooga(api_url, text, ooba_api_token, custom_prompt)
# 5. chat_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg)
# 6. chat_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt)
# 7. save_summary_to_file(summary, file_path)
#
#
####################
# Import necessary libraries
# Import Local
from App_Function_Libraries.Utils.Utils import *
#
#######################################################################################################################
# Function Definitions
#
def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None):
try:
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Local LLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("openai: Using provided string data for summarization")
data = input_data
logging.debug(f"Local LLM: Loaded data: {data}")
logging.debug(f"Local LLM: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Local LLM: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
if system_message is None:
system_message = "You are a helpful AI assistant."
headers = {
'Content-Type': 'application/json'
}
logging.debug("Local LLM: Preparing data + prompt for submittal")
local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
data = {
"messages": [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": local_llm_prompt
}
],
"max_tokens": 28000, # Adjust tokens as needed
}
logging.debug("Local LLM: Posting request")
response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content'].strip()
logging.debug("Local LLM: Summarization successful")
print("Local LLM: Summarization successful.")
return summary
else:
logging.warning("Local LLM: Chat response not found in the response data")
return "Local LLM: Chat response not available"
else:
logging.debug("Local LLM: Chat request failed")
print("Local LLM: Failed to process Chat response:", response.text)
return "Local LLM: Failed to process Chat response"
except Exception as e:
logging.debug("Local LLM: Error in processing: %s", str(e))
print("Error occurred while processing Chat request with Local LLM:", str(e))
return "Local LLM: Error occurred while processing Chat response"
# FIXME
def chat_with_llama(input_data, custom_prompt, temp, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("llama.cpp: API key not provided as parameter")
logging.info("llama.cpp: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['llama']
if api_key is None or api_key.strip() == "":
logging.info("llama.cpp: API key not found or is empty")
logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}")
if api_url is None:
logging.info("llama.cpp: API URL not provided as parameter")
logging.info("llama.cpp: Attempting to use API URL from config file")
api_url = loaded_config_data['local_api_ip']['llama']
if api_url is None or api_url.strip() == "":
logging.info("llama.cpp: API URL not found or is empty")
return "llama.cpp: API URL not found or is empty"
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if len(api_key) > 5:
headers['Authorization'] = f'Bearer {api_key}'
if system_prompt is None:
system_prompt = "You are a helpful AI assistant that provides accurate and concise information."
logging.debug("Llama.cpp: System prompt being used is: %s", system_prompt)
logging.debug("Llama.cpp: User prompt being used is: %s", custom_prompt)
llama_prompt = f"{custom_prompt} \n\n\n\n{input_data}"
logging.debug(f"llama: Prompt being sent is {llama_prompt}")
data = {
"prompt": f"{llama_prompt}",
"system_prompt": f"{system_prompt}",
'temperature': temp,
#'top_k': '40',
#'top_p': '0.95',
#'min_p': '0.05',
#'n_predict': '-1',
#'n_keep': '0',
'stream': 'True',
#'stop': '["\n"]',
#'tfs_z': '1.0',
#'repeat_penalty': '1.1',
#'repeat_last_n': '64',
#'presence_penalty': '0.0',
#'frequency_penalty': '0.0',
#'mirostat': '0',
#'grammar': '0',
#'json_schema': '0',
#'ignore_eos': 'false',
#'logit_bias': [],
#'n_probs': '0',
#'min_keep': '0',
#'samplers': '["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]',
}
logging.debug("llama: Submitting request to API endpoint")
print("llama: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data)
response_data = response.json()
logging.debug("API Response Data: %s", response_data)
if response.status_code == 200:
# if 'X' in response_data:
logging.debug(response_data)
summary = response_data['content'].strip()
logging.debug("llama: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}")
return f"Llama: API request failed: {response.text}"
except Exception as e:
logging.error("Llama: Error in processing: %s", str(e))
return f"Llama: Error occurred while processing summary with llama: {str(e)}"
# System prompts not supported through API requests.
# https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate
def chat_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None):
logging.debug("Kobold: Summarization process starting...")
try:
logging.debug("Kobold: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
kobold_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
kobold_api_key = api_key
logging.info("Kobold: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
kobold_api_key = loaded_config_data['api_keys'].get('kobold')
if kobold_api_key:
logging.info("Kobold: Using API key from config file")
else:
logging.warning("Kobold: No API key found in config file")
logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Kobold.cpp: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Kobold.cpp: Using provided string data for summarization")
data = input_data
logging.debug(f"Kobold.cpp: Loaded data: {data}")
logging.debug(f"Kobold.cpp: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Kobold.cpp: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Kobold.cpp: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}"
logging.debug("kobold: Prompt being sent is {kobold_prompt}")
# FIXME
# Values literally c/p from the api docs....
data = {
"prompt": kobold_prompt,
"temperature": 0.7,
#"top_p": 0.9,
#"top_k": 100
#"rep_penalty": 1.0,
}
logging.debug("kobold: Submitting request to API endpoint")
print("kobold: Submitting request to API endpoint")
kobold_api_ip = loaded_config_data['local_api_ip']['kobold']
try:
response = requests.post(kobold_api_ip, headers=headers, json=data)
logging.debug("kobold: API Response Status Code: %d", response.status_code)
if response.status_code == 200:
try:
response_data = response.json()
logging.debug("kobold: API Response Data: %s", response_data)
if response_data and 'results' in response_data and len(response_data['results']) > 0:
summary = response_data['results'][0]['text'].strip()
logging.debug("kobold: Chat request successful")
return summary
else:
logging.error("Expected data not found in API response.")
return "Expected data not found in API response."
except ValueError as e:
logging.error("kobold: Error parsing JSON response: %s", str(e))
return f"Error parsing JSON response: {str(e)}"
else:
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}")
return f"kobold: API request failed: {response.text}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing summary with kobold: {str(e)}"
except Exception as e:
logging.error("kobold: Error in processing: %s", str(e))
return f"kobold: Error occurred while processing chat response with kobold: {str(e)}"
# System prompt doesn't work. FIXME
# https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API
def chat_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", system_prompt=None):
loaded_config_data = load_and_log_configs()
try:
# API key validation
if api_key is None:
logging.info("ooba: API key not provided as parameter")
logging.info("ooba: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['ooba']
if api_key is None or api_key.strip() == "":
logging.info("ooba: API key not found or is empty")
if system_prompt is None:
system_prompt = "You are a helpful AI assistant that provides accurate and concise information."
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
# prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It
# is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are
# my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable
ooba_prompt = f"{input_data}" + f"\n\n\n\n{custom_prompt}"
logging.debug("ooba: Prompt being sent is {ooba_prompt}")
data = {
"mode": "chat",
"character": "Example",
"messages": [{"role": "user", "content": ooba_prompt}]
}
logging.debug("ooba: Submitting request to API endpoint")
print("ooba: Submitting request to API endpoint")
response = requests.post(api_url, headers=headers, json=data, verify=False)
logging.debug("ooba: API Response Data: %s", response)
if response.status_code == 200:
response_data = response.json()
summary = response.json()['choices'][0]['message']['content']
logging.debug("ooba: Summarization successful")
print("Summarization successful.")
return summary
else:
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}")
return f"ooba: API request failed with status code {response.status_code}: {response.text}"
except Exception as e:
logging.error("ooba: Error in processing: %s", str(e))
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}"
# FIXME - Install is more trouble than care to deal with right now.
def chat_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"):
loaded_config_data = load_and_log_configs()
model = loaded_config_data['models']['tabby']
# API key validation
if api_key is None:
logging.info("tabby: API key not provided as parameter")
logging.info("tabby: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['tabby']
if api_key is None or api_key.strip() == "":
logging.info("tabby: API key not found or is empty")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("tabby: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("tabby: Using provided string data for summarization")
data = input_data
logging.debug(f"tabby: Loaded data: {data}")
logging.debug(f"tabby: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("tabby: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Invalid input data format")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
data2 = {
'text': text,
'model': 'tabby' # Specify the model if needed
}
tabby_api_ip = loaded_config_data['local_api']['tabby']['ip']
try:
response = requests.post(tabby_api_ip, headers=headers, json=data2)
response.raise_for_status()
summary = response.json().get('summary', '')
return summary
except requests.exceptions.RequestException as e:
logging.error(f"Error summarizing with TabbyAPI: {e}")
return "Error summarizing with TabbyAPI."
# FIXME aphrodite engine - code was literally tab complete in one go from copilot... :/
def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:8080/completion"):
loaded_config_data = load_and_log_configs()
model = loaded_config_data['models']['aphrodite']
# API key validation
if api_key is None:
logging.info("aphrodite: API key not provided as parameter")
logging.info("aphrodite: Attempting to use API key from config file")
api_key = loaded_config_data['api_keys']['aphrodite']
if api_key is None or api_key.strip() == "":
logging.info("aphrodite: API key not found or is empty")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
data2 = {
'text': input_data,
}
try:
response = requests.post(api_IP, headers=headers, json=data2)
response.raise_for_status()
summary = response.json().get('summary', '')
return summary
except requests.exceptions.RequestException as e:
logging.error(f"Error summarizing with Aphrodite: {e}")
return "Error summarizing with Aphrodite."
def chat_with_ollama(
input_data,
custom_prompt,
api_url="http://127.0.0.1:11434/v1/chat/completions",
api_key=None,
temp=None,
system_message=None,
model=None,
max_retries=5,
retry_delay=20
):
try:
logging.debug("Ollama: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
ollama_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
ollama_api_key = api_key
logging.info("Ollama: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
ollama_api_key = loaded_config_data['api_keys'].get('ollama')
if ollama_api_key:
logging.info("Ollama: Using API key from config file")
else:
logging.warning("Ollama: No API key found in config file")
# Set model from parameter or config
if model is None:
model = loaded_config_data['models'].get('ollama')
if model is None:
logging.error("Ollama: Model not found in config file")
return "Ollama: Model not found in config file"
# Set api_url from parameter or config
if api_url is None:
api_url = loaded_config_data['local_api_ip'].get('ollama')
if api_url is None:
logging.error("Ollama: API URL not found in config file")
return "Ollama: API URL not found in config file"
# Load transcript
logging.debug("Ollama: Loading JSON data")
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("Ollama: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Ollama: Using provided string data for summarization")
data = input_data
logging.debug(f"Ollama: Loaded data: {data}")
logging.debug(f"Ollama: Type of data: {type(data)}")
if isinstance(data, dict) and 'summary' in data:
# If the loaded data is a dictionary and already contains a summary, return it
logging.debug("Ollama: Summary already exists in the loaded data")
return data['summary']
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
if isinstance(data, list):
segments = data
text = extract_text_from_segments(segments)
elif isinstance(data, str):
text = data
else:
raise ValueError("Ollama: Invalid input data format")
headers = {
'accept': 'application/json',
'content-type': 'application/json',
}
if ollama_api_key and len(ollama_api_key) > 5:
headers['Authorization'] = f'Bearer {ollama_api_key}'
ollama_prompt = f"{custom_prompt}\n\n{text}"
if system_message is None:
system_message = "You are a helpful AI assistant."
logging.debug(f"Ollama: Prompt being sent is: {ollama_prompt}")
data_payload = {
"model": model,
"messages": [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": ollama_prompt
}
],
}
for attempt in range(1, max_retries + 1):
logging.debug("Ollama: Submitting request to API endpoint")
print("Ollama: Submitting request to API endpoint")
try:
response = requests.post(api_url, headers=headers, json=data_payload, timeout=30)
response.raise_for_status() # Raises HTTPError for bad responses
response_data = response.json()
except requests.exceptions.Timeout:
logging.error("Ollama: Request timed out.")
return "Ollama: Request timed out."
except requests.exceptions.HTTPError as http_err:
logging.error(f"Ollama: HTTP error occurred: {http_err}")
return f"Ollama: HTTP error occurred: {http_err}"
except requests.exceptions.RequestException as req_err:
logging.error(f"Ollama: Request exception: {req_err}")
return f"Ollama: Request exception: {req_err}"
except json.JSONDecodeError:
logging.error("Ollama: Failed to decode JSON response")
return "Ollama: Failed to decode JSON response."
except Exception as e:
logging.error(f"Ollama: An unexpected error occurred: {str(e)}")
return f"Ollama: An unexpected error occurred: {str(e)}"
logging.debug(f"API Response Data: {response_data}")
if response.status_code == 200:
# Inspect available keys
available_keys = list(response_data.keys())
logging.debug(f"Ollama: Available keys in response: {available_keys}")
# Attempt to retrieve 'response'
summary = None
if 'response' in response_data and response_data['response']:
summary = response_data['response'].strip()
elif 'choices' in response_data and len(response_data['choices']) > 0:
choice = response_data['choices'][0]
if 'message' in choice and 'content' in choice['message']:
summary = choice['message']['content'].strip()
if summary:
logging.debug("Ollama: Chat request successful")
print("\n\nChat request successful.")
return summary
elif response_data.get('done_reason') == 'load':
logging.warning(f"Ollama: Model is loading. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
else:
logging.error("Ollama: API response does not contain 'response' or 'choices'.")
return "Ollama: API response does not contain 'response' or 'choices'."
else:
logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}")
return f"Ollama: API request failed: {response.text}"
logging.error("Ollama: Maximum retry attempts reached. Model is still loading.")
return "Ollama: Maximum retry attempts reached. Model is still loading."
except Exception as e:
logging.error("\n\nOllama: Error in processing: %s", str(e))
return f"Ollama: Error occurred while processing summary with Ollama: {str(e)}"
def chat_with_vllm(
input_data: Union[str, dict, list],
custom_prompt_input: str,
api_key: str = None,
vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions",
model: str = None,
system_prompt: str = None,
temp: float = 0.7
) -> str:
logging.debug("vLLM: Summarization process starting...")
try:
logging.debug("vLLM: Loading and validating configurations")
loaded_config_data = load_and_log_configs()
if loaded_config_data is None:
logging.error("Failed to load configuration data")
vllm_api_key = None
else:
# Prioritize the API key passed as a parameter
if api_key and api_key.strip():
vllm_api_key = api_key
logging.info("vLLM: Using API key provided as parameter")
else:
# If no parameter is provided, use the key from the config
vllm_api_key = loaded_config_data['api_keys'].get('vllm')
if vllm_api_key:
logging.info("vLLM: Using API key from config file")
else:
logging.warning("vLLM: No API key found in config file")
logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}")
# Process input data
if isinstance(input_data, str) and os.path.isfile(input_data):
logging.debug("vLLM: Loading json data for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("vLLM: Using provided data for summarization")
data = input_data
logging.debug(f"vLLM: Type of data: {type(data)}")
# Extract text for summarization
if isinstance(data, dict) and 'summary' in data:
logging.debug("vLLM: Summary already exists in the loaded data")
return data['summary']
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
elif isinstance(data, dict):
text = json.dumps(data)
else:
raise ValueError("Invalid input data format")
logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...")
if system_prompt is None:
system_prompt = "You are a helpful AI assistant."
model = model or loaded_config_data['models']['vllm']
if system_prompt is None:
system_prompt = "You are a helpful AI assistant."
# Prepare the API request
headers = {
"Content-Type": "application/json"
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"{custom_prompt_input}\n\n{text}"}
]
}
# Make the API call
logging.debug(f"vLLM: Sending request to {vllm_api_url}")
response = requests.post(vllm_api_url, headers=headers, json=payload)
# Check for successful response
response.raise_for_status()
# Extract and return the summary
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
summary = response_data['choices'][0]['message']['content']
logging.debug("vLLM: Summarization successful")
logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...")
return summary
else:
raise ValueError("Unexpected response format from vLLM API")
except requests.RequestException as e:
logging.error(f"vLLM: API request failed: {str(e)}")
return f"Error: vLLM API request failed - {str(e)}"
except json.JSONDecodeError as e:
logging.error(f"vLLM: Failed to parse API response: {str(e)}")
return f"Error: Failed to parse vLLM API response - {str(e)}"
except Exception as e:
logging.error(f"vLLM: Unexpected error during summarization: {str(e)}")
return f"Error: Unexpected error during vLLM summarization - {str(e)}"
def chat_with_custom_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
loaded_config_data = load_and_log_configs()
custom_openai_api_key = api_key
try:
# API key validation
if not custom_openai_api_key:
logging.info("Custom OpenAI API: API key not provided as parameter")
logging.info("Custom OpenAI API: Attempting to use API key from config file")
custom_openai_api_key = loaded_config_data['api_keys']['custom_openai_api_key']
if not custom_openai_api_key:
logging.error("Custom OpenAI API: API key not found or is empty")
return "Custom OpenAI API: API Key Not Provided/Found in Config file or is empty"
logging.debug(f"Custom OpenAI API: Using API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:]}")
# Input data handling
logging.debug(f"Custom OpenAI API: Raw input data type: {type(input_data)}")
logging.debug(f"Custom OpenAI API: Raw input data (first 500 chars): {str(input_data)[:500]}...")
if isinstance(input_data, str):
if input_data.strip().startswith('{'):
# It's likely a JSON string
logging.debug("Custom OpenAI API: Parsing provided JSON string data for summarization")
try:
data = json.loads(input_data)
except json.JSONDecodeError as e:
logging.error(f"Custom OpenAI API: Error parsing JSON string: {str(e)}")
return f"Custom OpenAI API: Error parsing JSON input: {str(e)}"
elif os.path.isfile(input_data):
logging.debug("Custom OpenAI API: Loading JSON data from file for summarization")
with open(input_data, 'r') as file:
data = json.load(file)
else:
logging.debug("Custom OpenAI API: Using provided string data for summarization")
data = input_data
else:
data = input_data
logging.debug(f"Custom OpenAI API: Processed data type: {type(data)}")
logging.debug(f"Custom OpenAI API: Processed data (first 500 chars): {str(data)[:500]}...")
# Text extraction
if isinstance(data, dict):
if 'summary' in data:
logging.debug("Custom OpenAI API: Summary already exists in the loaded data")
return data['summary']
elif 'segments' in data:
text = extract_text_from_segments(data['segments'])
else:
text = json.dumps(data) # Convert dict to string if no specific format
elif isinstance(data, list):
text = extract_text_from_segments(data)
elif isinstance(data, str):
text = data
else:
raise ValueError(f"Custom OpenAI API: Invalid input data format: {type(data)}")
logging.debug(f"Custom OpenAI API: Extracted text (first 500 chars): {text[:500]}...")
logging.debug(f"v: Custom prompt: {custom_prompt_arg}")
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
logging.debug(f"Custom OpenAI API: Using model: {openai_model}")
headers = {
'Authorization': f'Bearer {custom_openai_api_key}',
'Content-Type': 'application/json'
}
logging.debug(
f"OpenAI API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:] if custom_openai_api_key else None}")
logging.debug("Custom OpenAI API: Preparing data + prompt for submittal")
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
if temp is None:
temp = 0.7
if system_message is None:
system_message = "You are a helpful AI assistant who does whatever the user requests."
temp = float(temp)
data = {
"model": openai_model,
"messages": [
{"role": "system", "content": system_message},
{"role": "user", "content": openai_prompt}
],
"max_tokens": 4096,
"temperature": temp
}
custom_openai_url = loaded_config_data['Local_api_ip']['custom_openai_api_ip']
logging.debug("Custom OpenAI API: Posting request")
response = requests.post(custom_openai_url, headers=headers, json=data)
logging.debug(f"Custom OpenAI API full API response data: {response}")
if response.status_code == 200:
response_data = response.json()
logging.debug(response_data)
if 'choices' in response_data and len(response_data['choices']) > 0:
chat_response = response_data['choices'][0]['message']['content'].strip()
logging.debug("Custom OpenAI API: Chat Sent successfully")
logging.debug(f"Custom OpenAI API: Chat response: {chat_response}")
return chat_response
else:
logging.warning("Custom OpenAI API: Chat response not found in the response data")
return "Custom OpenAI API: Chat not available"
else:
logging.error(f"Custom OpenAI API: Chat request failed with status code {response.status_code}")
logging.error(f"Custom OpenAI API: Error response: {response.text}")
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
except json.JSONDecodeError as e:
logging.error(f"Custom OpenAI API: Error decoding JSON: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Error decoding JSON input: {str(e)}"
except requests.RequestException as e:
logging.error(f"Custom OpenAI API: Error making API request: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Error making API request: {str(e)}"
except Exception as e:
logging.error(f"Custom OpenAI API: Unexpected error: {str(e)}", exc_info=True)
return f"Custom OpenAI API: Unexpected error occurred: {str(e)}"
def save_summary_to_file(summary, file_path):
logging.debug("Now saving summary to file...")
base_name = os.path.splitext(os.path.basename(file_path))[0]
summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt')
os.makedirs(os.path.dirname(summary_file_path), exist_ok=True)
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt")
with open(summary_file_path, 'w') as file:
file.write(summary)
logging.info(f"Summary saved to file: {summary_file_path}")
#
#
#######################################################################################################################