# Local_Summarization_Lib.py ######################################### # Local Summarization Library # This library is used to perform summarization with a 'local' inference engine. # #### import logging from typing import Union #################### # Function List # FIXME - UPDATE # 1. chat_with_local_llm(text, custom_prompt_arg) # 2. chat_with_llama(api_url, text, token, custom_prompt) # 3. chat_with_kobold(api_url, text, kobold_api_token, custom_prompt) # 4. chat_with_oobabooga(api_url, text, ooba_api_token, custom_prompt) # 5. chat_with_vllm(vllm_api_url, vllm_api_key_function_arg, llm_model, text, vllm_custom_prompt_function_arg) # 6. chat_with_tabbyapi(tabby_api_key, tabby_api_IP, text, tabby_model, custom_prompt) # 7. save_summary_to_file(summary, file_path) # # #################### # Import necessary libraries # Import Local from App_Function_Libraries.Utils.Utils import * # ####################################################################################################################### # Function Definitions # def chat_with_local_llm(input_data, custom_prompt_arg, temp, system_message=None): try: if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Local LLM: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("openai: Using provided string data for summarization") data = input_data logging.debug(f"Local LLM: Loaded data: {data}") logging.debug(f"Local LLM: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Local LLM: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Invalid input data format") if system_message is None: system_message = "You are a helpful AI assistant." headers = { 'Content-Type': 'application/json' } logging.debug("Local LLM: Preparing data + prompt for submittal") local_llm_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" data = { "messages": [ { "role": "system", "content": system_message }, { "role": "user", "content": local_llm_prompt } ], "max_tokens": 28000, # Adjust tokens as needed } logging.debug("Local LLM: Posting request") response = requests.post('http://127.0.0.1:8080/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("Local LLM: Summarization successful") print("Local LLM: Summarization successful.") return summary else: logging.warning("Local LLM: Chat response not found in the response data") return "Local LLM: Chat response not available" else: logging.debug("Local LLM: Chat request failed") print("Local LLM: Failed to process Chat response:", response.text) return "Local LLM: Failed to process Chat response" except Exception as e: logging.debug("Local LLM: Error in processing: %s", str(e)) print("Error occurred while processing Chat request with Local LLM:", str(e)) return "Local LLM: Error occurred while processing Chat response" # FIXME def chat_with_llama(input_data, custom_prompt, temp, api_url="http://127.0.0.1:8080/completion", api_key=None, system_prompt=None): loaded_config_data = load_and_log_configs() try: # API key validation if api_key is None: logging.info("llama.cpp: API key not provided as parameter") logging.info("llama.cpp: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['llama'] if api_key is None or api_key.strip() == "": logging.info("llama.cpp: API key not found or is empty") logging.debug(f"llama.cpp: Using API Key: {api_key[:5]}...{api_key[-5:]}") if api_url is None: logging.info("llama.cpp: API URL not provided as parameter") logging.info("llama.cpp: Attempting to use API URL from config file") api_url = loaded_config_data['local_api_ip']['llama'] if api_url is None or api_url.strip() == "": logging.info("llama.cpp: API URL not found or is empty") return "llama.cpp: API URL not found or is empty" headers = { 'accept': 'application/json', 'content-type': 'application/json', } if len(api_key) > 5: headers['Authorization'] = f'Bearer {api_key}' if system_prompt is None: system_prompt = "You are a helpful AI assistant that provides accurate and concise information." logging.debug("Llama.cpp: System prompt being used is: %s", system_prompt) logging.debug("Llama.cpp: User prompt being used is: %s", custom_prompt) llama_prompt = f"{custom_prompt} \n\n\n\n{input_data}" logging.debug(f"llama: Prompt being sent is {llama_prompt}") data = { "prompt": f"{llama_prompt}", "system_prompt": f"{system_prompt}", 'temperature': temp, #'top_k': '40', #'top_p': '0.95', #'min_p': '0.05', #'n_predict': '-1', #'n_keep': '0', 'stream': 'True', #'stop': '["\n"]', #'tfs_z': '1.0', #'repeat_penalty': '1.1', #'repeat_last_n': '64', #'presence_penalty': '0.0', #'frequency_penalty': '0.0', #'mirostat': '0', #'grammar': '0', #'json_schema': '0', #'ignore_eos': 'false', #'logit_bias': [], #'n_probs': '0', #'min_keep': '0', #'samplers': '["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]', } logging.debug("llama: Submitting request to API endpoint") print("llama: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: # if 'X' in response_data: logging.debug(response_data) summary = response_data['content'].strip() logging.debug("llama: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"Llama: API request failed with status code {response.status_code}: {response.text}") return f"Llama: API request failed: {response.text}" except Exception as e: logging.error("Llama: Error in processing: %s", str(e)) return f"Llama: Error occurred while processing summary with llama: {str(e)}" # System prompts not supported through API requests. # https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate def chat_with_kobold(input_data, api_key, custom_prompt_input, kobold_api_ip="http://127.0.0.1:5001/api/v1/generate", temp=None, system_message=None): logging.debug("Kobold: Summarization process starting...") try: logging.debug("Kobold: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") kobold_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): kobold_api_key = api_key logging.info("Kobold: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config kobold_api_key = loaded_config_data['api_keys'].get('kobold') if kobold_api_key: logging.info("Kobold: Using API key from config file") else: logging.warning("Kobold: No API key found in config file") logging.debug(f"Kobold: Using API Key: {kobold_api_key[:5]}...{kobold_api_key[-5:]}") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Kobold.cpp: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Kobold.cpp: Using provided string data for summarization") data = input_data logging.debug(f"Kobold.cpp: Loaded data: {data}") logging.debug(f"Kobold.cpp: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Kobold.cpp: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Kobold.cpp: Invalid input data format") headers = { 'accept': 'application/json', 'content-type': 'application/json', } kobold_prompt = f"{custom_prompt_input}\n\n\n\n{text}" logging.debug("kobold: Prompt being sent is {kobold_prompt}") # FIXME # Values literally c/p from the api docs.... data = { "prompt": kobold_prompt, "temperature": 0.7, #"top_p": 0.9, #"top_k": 100 #"rep_penalty": 1.0, } logging.debug("kobold: Submitting request to API endpoint") print("kobold: Submitting request to API endpoint") kobold_api_ip = loaded_config_data['local_api_ip']['kobold'] try: response = requests.post(kobold_api_ip, headers=headers, json=data) logging.debug("kobold: API Response Status Code: %d", response.status_code) if response.status_code == 200: try: response_data = response.json() logging.debug("kobold: API Response Data: %s", response_data) if response_data and 'results' in response_data and len(response_data['results']) > 0: summary = response_data['results'][0]['text'].strip() logging.debug("kobold: Chat request successful") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." except ValueError as e: logging.error("kobold: Error parsing JSON response: %s", str(e)) return f"Error parsing JSON response: {str(e)}" else: logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") return f"kobold: API request failed: {response.text}" except Exception as e: logging.error("kobold: Error in processing: %s", str(e)) return f"kobold: Error occurred while processing summary with kobold: {str(e)}" except Exception as e: logging.error("kobold: Error in processing: %s", str(e)) return f"kobold: Error occurred while processing chat response with kobold: {str(e)}" # System prompt doesn't work. FIXME # https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API def chat_with_oobabooga(input_data, api_key, custom_prompt, api_url="http://127.0.0.1:5000/v1/chat/completions", system_prompt=None): loaded_config_data = load_and_log_configs() try: # API key validation if api_key is None: logging.info("ooba: API key not provided as parameter") logging.info("ooba: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['ooba'] if api_key is None or api_key.strip() == "": logging.info("ooba: API key not found or is empty") if system_prompt is None: system_prompt = "You are a helpful AI assistant that provides accurate and concise information." headers = { 'accept': 'application/json', 'content-type': 'application/json', } # prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a French bakery baking cakes. It # is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are # my favorite." prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable ooba_prompt = f"{input_data}" + f"\n\n\n\n{custom_prompt}" logging.debug("ooba: Prompt being sent is {ooba_prompt}") data = { "mode": "chat", "character": "Example", "messages": [{"role": "user", "content": ooba_prompt}] } logging.debug("ooba: Submitting request to API endpoint") print("ooba: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data, verify=False) logging.debug("ooba: API Response Data: %s", response) if response.status_code == 200: response_data = response.json() summary = response.json()['choices'][0]['message']['content'] logging.debug("ooba: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") return f"ooba: API request failed with status code {response.status_code}: {response.text}" except Exception as e: logging.error("ooba: Error in processing: %s", str(e)) return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" # FIXME - Install is more trouble than care to deal with right now. def chat_with_tabbyapi(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:5000/v1/chat/completions"): loaded_config_data = load_and_log_configs() model = loaded_config_data['models']['tabby'] # API key validation if api_key is None: logging.info("tabby: API key not provided as parameter") logging.info("tabby: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['tabby'] if api_key is None or api_key.strip() == "": logging.info("tabby: API key not found or is empty") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("tabby: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("tabby: Using provided string data for summarization") data = input_data logging.debug(f"tabby: Loaded data: {data}") logging.debug(f"tabby: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("tabby: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Invalid input data format") headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data2 = { 'text': text, 'model': 'tabby' # Specify the model if needed } tabby_api_ip = loaded_config_data['local_api']['tabby']['ip'] try: response = requests.post(tabby_api_ip, headers=headers, json=data2) response.raise_for_status() summary = response.json().get('summary', '') return summary except requests.exceptions.RequestException as e: logging.error(f"Error summarizing with TabbyAPI: {e}") return "Error summarizing with TabbyAPI." # FIXME aphrodite engine - code was literally tab complete in one go from copilot... :/ def chat_with_aphrodite(input_data, custom_prompt_input, api_key=None, api_IP="http://127.0.0.1:8080/completion"): loaded_config_data = load_and_log_configs() model = loaded_config_data['models']['aphrodite'] # API key validation if api_key is None: logging.info("aphrodite: API key not provided as parameter") logging.info("aphrodite: Attempting to use API key from config file") api_key = loaded_config_data['api_keys']['aphrodite'] if api_key is None or api_key.strip() == "": logging.info("aphrodite: API key not found or is empty") headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } data2 = { 'text': input_data, } try: response = requests.post(api_IP, headers=headers, json=data2) response.raise_for_status() summary = response.json().get('summary', '') return summary except requests.exceptions.RequestException as e: logging.error(f"Error summarizing with Aphrodite: {e}") return "Error summarizing with Aphrodite." def chat_with_ollama( input_data, custom_prompt, api_url="http://127.0.0.1:11434/v1/chat/completions", api_key=None, temp=None, system_message=None, model=None, max_retries=5, retry_delay=20 ): try: logging.debug("Ollama: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") ollama_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): ollama_api_key = api_key logging.info("Ollama: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config ollama_api_key = loaded_config_data['api_keys'].get('ollama') if ollama_api_key: logging.info("Ollama: Using API key from config file") else: logging.warning("Ollama: No API key found in config file") # Set model from parameter or config if model is None: model = loaded_config_data['models'].get('ollama') if model is None: logging.error("Ollama: Model not found in config file") return "Ollama: Model not found in config file" # Set api_url from parameter or config if api_url is None: api_url = loaded_config_data['local_api_ip'].get('ollama') if api_url is None: logging.error("Ollama: API URL not found in config file") return "Ollama: API URL not found in config file" # Load transcript logging.debug("Ollama: Loading JSON data") if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("Ollama: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Ollama: Using provided string data for summarization") data = input_data logging.debug(f"Ollama: Loaded data: {data}") logging.debug(f"Ollama: Type of data: {type(data)}") if isinstance(data, dict) and 'summary' in data: # If the loaded data is a dictionary and already contains a summary, return it logging.debug("Ollama: Summary already exists in the loaded data") return data['summary'] # If the loaded data is a list of segment dictionaries or a string, proceed with summarization if isinstance(data, list): segments = data text = extract_text_from_segments(segments) elif isinstance(data, str): text = data else: raise ValueError("Ollama: Invalid input data format") headers = { 'accept': 'application/json', 'content-type': 'application/json', } if ollama_api_key and len(ollama_api_key) > 5: headers['Authorization'] = f'Bearer {ollama_api_key}' ollama_prompt = f"{custom_prompt}\n\n{text}" if system_message is None: system_message = "You are a helpful AI assistant." logging.debug(f"Ollama: Prompt being sent is: {ollama_prompt}") data_payload = { "model": model, "messages": [ { "role": "system", "content": system_message }, { "role": "user", "content": ollama_prompt } ], } for attempt in range(1, max_retries + 1): logging.debug("Ollama: Submitting request to API endpoint") print("Ollama: Submitting request to API endpoint") try: response = requests.post(api_url, headers=headers, json=data_payload, timeout=30) response.raise_for_status() # Raises HTTPError for bad responses response_data = response.json() except requests.exceptions.Timeout: logging.error("Ollama: Request timed out.") return "Ollama: Request timed out." except requests.exceptions.HTTPError as http_err: logging.error(f"Ollama: HTTP error occurred: {http_err}") return f"Ollama: HTTP error occurred: {http_err}" except requests.exceptions.RequestException as req_err: logging.error(f"Ollama: Request exception: {req_err}") return f"Ollama: Request exception: {req_err}" except json.JSONDecodeError: logging.error("Ollama: Failed to decode JSON response") return "Ollama: Failed to decode JSON response." except Exception as e: logging.error(f"Ollama: An unexpected error occurred: {str(e)}") return f"Ollama: An unexpected error occurred: {str(e)}" logging.debug(f"API Response Data: {response_data}") if response.status_code == 200: # Inspect available keys available_keys = list(response_data.keys()) logging.debug(f"Ollama: Available keys in response: {available_keys}") # Attempt to retrieve 'response' summary = None if 'response' in response_data and response_data['response']: summary = response_data['response'].strip() elif 'choices' in response_data and len(response_data['choices']) > 0: choice = response_data['choices'][0] if 'message' in choice and 'content' in choice['message']: summary = choice['message']['content'].strip() if summary: logging.debug("Ollama: Chat request successful") print("\n\nChat request successful.") return summary elif response_data.get('done_reason') == 'load': logging.warning(f"Ollama: Model is loading. Attempt {attempt} of {max_retries}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) else: logging.error("Ollama: API response does not contain 'response' or 'choices'.") return "Ollama: API response does not contain 'response' or 'choices'." else: logging.error(f"Ollama: API request failed with status code {response.status_code}: {response.text}") return f"Ollama: API request failed: {response.text}" logging.error("Ollama: Maximum retry attempts reached. Model is still loading.") return "Ollama: Maximum retry attempts reached. Model is still loading." except Exception as e: logging.error("\n\nOllama: Error in processing: %s", str(e)) return f"Ollama: Error occurred while processing summary with Ollama: {str(e)}" def chat_with_vllm( input_data: Union[str, dict, list], custom_prompt_input: str, api_key: str = None, vllm_api_url: str = "http://127.0.0.1:8000/v1/chat/completions", model: str = None, system_prompt: str = None, temp: float = 0.7 ) -> str: logging.debug("vLLM: Summarization process starting...") try: logging.debug("vLLM: Loading and validating configurations") loaded_config_data = load_and_log_configs() if loaded_config_data is None: logging.error("Failed to load configuration data") vllm_api_key = None else: # Prioritize the API key passed as a parameter if api_key and api_key.strip(): vllm_api_key = api_key logging.info("vLLM: Using API key provided as parameter") else: # If no parameter is provided, use the key from the config vllm_api_key = loaded_config_data['api_keys'].get('vllm') if vllm_api_key: logging.info("vLLM: Using API key from config file") else: logging.warning("vLLM: No API key found in config file") logging.debug(f"vLLM: Using API Key: {vllm_api_key[:5]}...{vllm_api_key[-5:]}") # Process input data if isinstance(input_data, str) and os.path.isfile(input_data): logging.debug("vLLM: Loading json data for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("vLLM: Using provided data for summarization") data = input_data logging.debug(f"vLLM: Type of data: {type(data)}") # Extract text for summarization if isinstance(data, dict) and 'summary' in data: logging.debug("vLLM: Summary already exists in the loaded data") return data['summary'] elif isinstance(data, list): text = extract_text_from_segments(data) elif isinstance(data, str): text = data elif isinstance(data, dict): text = json.dumps(data) else: raise ValueError("Invalid input data format") logging.debug(f"vLLM: Extracted text (showing first 500 chars): {text[:500]}...") if system_prompt is None: system_prompt = "You are a helpful AI assistant." model = model or loaded_config_data['models']['vllm'] if system_prompt is None: system_prompt = "You are a helpful AI assistant." # Prepare the API request headers = { "Content-Type": "application/json" } payload = { "model": model, "messages": [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"{custom_prompt_input}\n\n{text}"} ] } # Make the API call logging.debug(f"vLLM: Sending request to {vllm_api_url}") response = requests.post(vllm_api_url, headers=headers, json=payload) # Check for successful response response.raise_for_status() # Extract and return the summary response_data = response.json() if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'] logging.debug("vLLM: Summarization successful") logging.debug(f"vLLM: Summary (first 500 chars): {summary[:500]}...") return summary else: raise ValueError("Unexpected response format from vLLM API") except requests.RequestException as e: logging.error(f"vLLM: API request failed: {str(e)}") return f"Error: vLLM API request failed - {str(e)}" except json.JSONDecodeError as e: logging.error(f"vLLM: Failed to parse API response: {str(e)}") return f"Error: Failed to parse vLLM API response - {str(e)}" except Exception as e: logging.error(f"vLLM: Unexpected error during summarization: {str(e)}") return f"Error: Unexpected error during vLLM summarization - {str(e)}" def chat_with_custom_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None): loaded_config_data = load_and_log_configs() custom_openai_api_key = api_key try: # API key validation if not custom_openai_api_key: logging.info("Custom OpenAI API: API key not provided as parameter") logging.info("Custom OpenAI API: Attempting to use API key from config file") custom_openai_api_key = loaded_config_data['api_keys']['custom_openai_api_key'] if not custom_openai_api_key: logging.error("Custom OpenAI API: API key not found or is empty") return "Custom OpenAI API: API Key Not Provided/Found in Config file or is empty" logging.debug(f"Custom OpenAI API: Using API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:]}") # Input data handling logging.debug(f"Custom OpenAI API: Raw input data type: {type(input_data)}") logging.debug(f"Custom OpenAI API: Raw input data (first 500 chars): {str(input_data)[:500]}...") if isinstance(input_data, str): if input_data.strip().startswith('{'): # It's likely a JSON string logging.debug("Custom OpenAI API: Parsing provided JSON string data for summarization") try: data = json.loads(input_data) except json.JSONDecodeError as e: logging.error(f"Custom OpenAI API: Error parsing JSON string: {str(e)}") return f"Custom OpenAI API: Error parsing JSON input: {str(e)}" elif os.path.isfile(input_data): logging.debug("Custom OpenAI API: Loading JSON data from file for summarization") with open(input_data, 'r') as file: data = json.load(file) else: logging.debug("Custom OpenAI API: Using provided string data for summarization") data = input_data else: data = input_data logging.debug(f"Custom OpenAI API: Processed data type: {type(data)}") logging.debug(f"Custom OpenAI API: Processed data (first 500 chars): {str(data)[:500]}...") # Text extraction if isinstance(data, dict): if 'summary' in data: logging.debug("Custom OpenAI API: Summary already exists in the loaded data") return data['summary'] elif 'segments' in data: text = extract_text_from_segments(data['segments']) else: text = json.dumps(data) # Convert dict to string if no specific format elif isinstance(data, list): text = extract_text_from_segments(data) elif isinstance(data, str): text = data else: raise ValueError(f"Custom OpenAI API: Invalid input data format: {type(data)}") logging.debug(f"Custom OpenAI API: Extracted text (first 500 chars): {text[:500]}...") logging.debug(f"v: Custom prompt: {custom_prompt_arg}") openai_model = loaded_config_data['models']['openai'] or "gpt-4o" logging.debug(f"Custom OpenAI API: Using model: {openai_model}") headers = { 'Authorization': f'Bearer {custom_openai_api_key}', 'Content-Type': 'application/json' } logging.debug( f"OpenAI API Key: {custom_openai_api_key[:5]}...{custom_openai_api_key[-5:] if custom_openai_api_key else None}") logging.debug("Custom OpenAI API: Preparing data + prompt for submittal") openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}" if temp is None: temp = 0.7 if system_message is None: system_message = "You are a helpful AI assistant who does whatever the user requests." temp = float(temp) data = { "model": openai_model, "messages": [ {"role": "system", "content": system_message}, {"role": "user", "content": openai_prompt} ], "max_tokens": 4096, "temperature": temp } custom_openai_url = loaded_config_data['Local_api_ip']['custom_openai_api_ip'] logging.debug("Custom OpenAI API: Posting request") response = requests.post(custom_openai_url, headers=headers, json=data) logging.debug(f"Custom OpenAI API full API response data: {response}") if response.status_code == 200: response_data = response.json() logging.debug(response_data) if 'choices' in response_data and len(response_data['choices']) > 0: chat_response = response_data['choices'][0]['message']['content'].strip() logging.debug("Custom OpenAI API: Chat Sent successfully") logging.debug(f"Custom OpenAI API: Chat response: {chat_response}") return chat_response else: logging.warning("Custom OpenAI API: Chat response not found in the response data") return "Custom OpenAI API: Chat not available" else: logging.error(f"Custom OpenAI API: Chat request failed with status code {response.status_code}") logging.error(f"Custom OpenAI API: Error response: {response.text}") return f"OpenAI: Failed to process chat response. Status code: {response.status_code}" except json.JSONDecodeError as e: logging.error(f"Custom OpenAI API: Error decoding JSON: {str(e)}", exc_info=True) return f"Custom OpenAI API: Error decoding JSON input: {str(e)}" except requests.RequestException as e: logging.error(f"Custom OpenAI API: Error making API request: {str(e)}", exc_info=True) return f"Custom OpenAI API: Error making API request: {str(e)}" except Exception as e: logging.error(f"Custom OpenAI API: Unexpected error: {str(e)}", exc_info=True) return f"Custom OpenAI API: Unexpected error occurred: {str(e)}" def save_summary_to_file(summary, file_path): logging.debug("Now saving summary to file...") base_name = os.path.splitext(os.path.basename(file_path))[0] summary_file_path = os.path.join(os.path.dirname(file_path), base_name + '_summary.txt') os.makedirs(os.path.dirname(summary_file_path), exist_ok=True) logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") with open(summary_file_path, 'w') as file: file.write(summary) logging.info(f"Summary saved to file: {summary_file_path}") # # #######################################################################################################################