23A464A / app.py
apailang's picture
adding label_maps
e0a2978
raw
history blame
4.4 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def load_model2():
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
tarfile.open("balloon_model.tar.gz").extractall()
model_dir = 'saved_model'
detection_model = tf.saved_model.load(str(model_dir))
return detection_model
# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
#
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
def detect_video(video):
# Create a video capture object
cap = cv2.VideoCapture(video)
# Process frames in a loop
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Expand dimensions since model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(frame, axis=0)
# Run inference
output_dict = detection_model(image_np_expanded)
# Extract detections
boxes = output_dict['detection_boxes'][0].numpy()
scores = output_dict['detection_scores'][0].numpy()
classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
# Draw bounding boxes and labels
image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
frame,
boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=.5,
agnostic_mode=False)
# Yield the processed frame
yield image_np_with_detections
# Release resources
cap.release()
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil")
).launch(share=True)
# iface = gr.Blocks()
# iface.Image(fn=predict, inputs=gr.Image(type="pil"), label="Image Detection",outputs=gr.Image(type="pil"))
# iface.Video(fn=detect_video, inputs=gr.Video(type="mp4", live=True, label="Input Video"),outputs=gr.Video(type="mp4", label="Detected Video", live=True), label="Video Detection", interpretation="default")
# iface.launch(share=True)