Spaces:
Sleeping
Sleeping
adding label_maps
Browse files
app.py
CHANGED
@@ -76,6 +76,44 @@ def predict2(image_np):
|
|
76 |
|
77 |
return result_pil_img
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
REPO_ID = "apailang/mytfodmodel"
|
81 |
detection_model = load_model()
|
@@ -89,3 +127,12 @@ gr.Interface(fn=predict,
|
|
89 |
inputs=gr.Image(type="pil"),
|
90 |
outputs=gr.Image(type="pil")
|
91 |
).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
return result_pil_img
|
78 |
|
79 |
+
def detect_video(video):
|
80 |
+
# Create a video capture object
|
81 |
+
cap = cv2.VideoCapture(video)
|
82 |
+
|
83 |
+
# Process frames in a loop
|
84 |
+
while cap.isOpened():
|
85 |
+
ret, frame = cap.read()
|
86 |
+
if not ret:
|
87 |
+
break
|
88 |
+
|
89 |
+
# Expand dimensions since model expects images to have shape: [1, None, None, 3]
|
90 |
+
image_np_expanded = np.expand_dims(frame, axis=0)
|
91 |
+
|
92 |
+
# Run inference
|
93 |
+
output_dict = detection_model(image_np_expanded)
|
94 |
+
|
95 |
+
# Extract detections
|
96 |
+
boxes = output_dict['detection_boxes'][0].numpy()
|
97 |
+
scores = output_dict['detection_scores'][0].numpy()
|
98 |
+
classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
|
99 |
+
|
100 |
+
# Draw bounding boxes and labels
|
101 |
+
image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
|
102 |
+
frame,
|
103 |
+
boxes,
|
104 |
+
classes,
|
105 |
+
scores,
|
106 |
+
category_index,
|
107 |
+
use_normalized_coordinates=True,
|
108 |
+
max_boxes_to_draw=20,
|
109 |
+
min_score_thresh=.5,
|
110 |
+
agnostic_mode=False)
|
111 |
+
|
112 |
+
# Yield the processed frame
|
113 |
+
yield image_np_with_detections
|
114 |
+
|
115 |
+
# Release resources
|
116 |
+
cap.release()
|
117 |
|
118 |
REPO_ID = "apailang/mytfodmodel"
|
119 |
detection_model = load_model()
|
|
|
127 |
inputs=gr.Image(type="pil"),
|
128 |
outputs=gr.Image(type="pil")
|
129 |
).launch(share=True)
|
130 |
+
|
131 |
+
# iface = gr.Blocks()
|
132 |
+
|
133 |
+
# iface.Image(fn=predict, inputs=gr.Image(type="pil"), label="Image Detection",outputs=gr.Image(type="pil"))
|
134 |
+
# iface.Video(fn=detect_video, inputs=gr.Video(type="mp4", live=True, label="Input Video"),outputs=gr.Video(type="mp4", label="Detected Video", live=True), label="Video Detection", interpretation="default")
|
135 |
+
|
136 |
+
# iface.launch(share=True)
|
137 |
+
|
138 |
+
|