Spaces:
Running
Running
File size: 9,039 Bytes
6f8669b 65d79e3 d914368 6f8669b 6db2b96 6f8669b 6e8b4f6 83beac5 6f8669b 7032a5d 5dad358 85d5bae eead8a4 61df7bb 480ce71 6f8669b ca411f8 6f8669b 0231808 85d5bae 9227f5d 6f8669b 1bc6b45 ce897a6 6f8669b 6db2b96 6f8669b 480ce71 6db2b96 ca411f8 9227f5d 6db2b96 7218336 ce897a6 6db2b96 480ce71 6f8669b bf4597b e0a2978 47bf365 640cf00 bf4597b daf641a faa93f2 5983968 6f8669b 6db2b96 c1d9208 6f8669b 4024f11 6db2b96 162cc9c a23ed6b a3be0e0 a23ed6b 85d5bae a3be0e0 c9288cc ca411f8 a106563 5791824 6db2b96 bf4597b 6db2b96 ff9ef5b d177d66 640cf00 ff9ef5b c5d7db5 a106563 20f285d 47bf365 daf641a bf4597b d177d66 c1d9208 bf4597b ff9ef5b d177d66 4024f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
from tqdm import tqdm
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model(model_repo_id):
download_dir = snapshot_download(model_repo_id)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
def predict(pilimg,Threshold):
image_np = pil_image_as_numpy_array(pilimg)
if Threshold is None or Threshold == 0:
Threshold=threshold_d
else:
Threshold= float(Threshold)
return predict2(image_np,Threshold),predict3(image_np,Threshold),Threshold
def predict2(image_np,Threshold):
results = detection_model(image_np)
# if Threshold is None or Threshold == 0:
# Threshold=threshold_d
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=Threshold,#0.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img2 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img2
def predict3(image_np,Threshold):
results = detection_model2(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=20,
min_score_thresh=Threshold,#.38,
agnostic_mode=False,
line_thickness=2)
result_pil_img4 = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img4
# def detect_video(video):
# # Create a video capture object
# cap = cv2.VideoCapture(video)
# # Process frames in a loop
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# # Expand dimensions since model expects images to have shape: [1, None, None, 3]
# image_np_expanded = np.expand_dims(frame, axis=0)
# # Run inference
# output_dict = model(image_np_expanded)
# # Extract detections
# boxes = output_dict['detection_boxes'][0].numpy()
# scores = output_dict['detection_scores'][0].numpy()
# classes = output_dict['detection_classes'][0].numpy().astype(np.int64)
# # Draw bounding boxes and labels
# image_np_with_detections = viz_utils.visualize_boxes_and_labels_on_image_array(
# frame,
# boxes,
# classes,
# scores,
# category_index,
# use_normalized_coordinates=True,
# max_boxes_to_draw=20,
# min_score_thresh=.5,
# agnostic_mode=False)
# # Yield the processed frame
# yield image_np_with_detections
# # Release resources
# cap.release()
a = os.path.join(os.path.dirname(__file__), "data/c_base_detected.mp4") # Video
b = os.path.join(os.path.dirname(__file__), "data/c_tuned_detected.mp4") # Video
# def video_demo(video1, video2):
# return [video1, video2]
label_id_offset = 0
threshold_d= 0.38
REPO_ID = "apailang/mytfodmodel"
detection_model = load_model(REPO_ID)
REPO_ID2 = "apailang/mytfodmodeltuned"
detection_model2 = load_model(REPO_ID2)
samples_folder = 'data'
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
test1 = os.path.join(os.path.dirname(__file__), "data/test1.jpeg")
test2 = os.path.join(os.path.dirname(__file__), "data/test2.jpeg")
test3 = os.path.join(os.path.dirname(__file__), "data/test3.jpeg")
test4 = os.path.join(os.path.dirname(__file__), "data/test4.jpeg")
test5 = os.path.join(os.path.dirname(__file__), "data/test5.jpeg")
test6 = os.path.join(os.path.dirname(__file__), "data/test6.jpeg")
test7 = os.path.join(os.path.dirname(__file__), "data/test7.jpeg")
test8 = os.path.join(os.path.dirname(__file__), "data/test8.jpeg")
test9 = os.path.join(os.path.dirname(__file__), "data/test9.jpeg")
test10 = os.path.join(os.path.dirname(__file__), "data/test10.jpeg")
test11 = os.path.join(os.path.dirname(__file__), "data/test11.jpeg")
test12 = os.path.join(os.path.dirname(__file__), "data/test12.jpeg")
base_image = gr.Interface(
fn=predict,
# inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.01, maximum=1, value=0.38 ,label="Threshold",info="[not in used]to set prediction confidence threshold")],
inputs=[gr.Image(type="pil"),gr.Slider(minimum=0.05, maximum=1,step=0.05,value=threshold_d ,label="To change default 0.38 prediction confidence Threshold. Range 0.05 to 1",info="Select any image below to start, you may amend threshold after first inference")],
outputs=[gr.Image(type="pil",label="Base Model Inference"),gr.Image(type="pil",label="Tuned Model Inference"),gr.Textbox(label="Both images inferenced threshold")],
title="Luffy and Chopper Head detection. SSD mobile net V2 320x320 trained with animated characters only",
description="Upload a Image for prediction or click on below examples. Prediction confident is defaut to >38%, you may adjust after first inference",
examples=
[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
cache_examples=True,examples_per_page=12 #,label="select image with 0.38 threshold to inference, you may amend threshold after inference"
)
# tuned_image = gr.Interface(
# fn=predict3,
# inputs=gr.Image(type="pil"),
# outputs=gr.Image(type="pil"),
# title="Luffy and Chopper face detection on images. Result comparison of base vs tuned SSD mobile net V2 320x320",
# description="Upload a Image for prediction or click on below examples. Mobile net tuned with data Augmentation. Prediction confident >38%",
# examples=[[test1],[test2],[test3],[test4],[test5],[test6],[test7],[test8],[test9],[test10],[test11],[test12],],
# cache_examples=True
# )#.launch(share=True)
# a = os.path.join(os.path.dirname(__file__), "data/a.mp4") # Video
# b = os.path.join(os.path.dirname(__file__), "data/b.mp4") # Video
# c = os.path.join(os.path.dirname(__file__), "data/c.mp4") # Video
# video_out_file = os.path.join(samples_folder,'detected' + '.mp4')
# stt_demo = gr.Interface(
# fn=display_two_videos,
# inputs=gr.Video(),
# outputs=gr.Video(type="mp4",label="Detected Video"),
# examples=[
# [a],
# [b],
# [c],
# ],
# cache_examples=False
# )
video = gr.Interface(
fn=lambda x,y: [x,y], #video_demo,
inputs=[gr.Video(label="Base Model Video",interactive=False),gr.Video(label="Tuned Model Video",interactive=False)],
outputs=[gr.Video(label="Base Model Inferenced Video"), gr.Video(label="Tuned Model Inferenced Video")],
examples=[
[a, b]
],
title="Luffy and Chopper face detection on video Result comparison of base vs tuned SSD mobile net V2 320x320",
description="Model has been customed trained to detect Character of Luffy and Chopper with Prediction confident >10%. Videos are pre-inferenced to reduce load time. (Browser zoom out to view right columne - top (base model inference) & bottom(tuned model inference)) "
)
demo = gr.TabbedInterface([base_image, video], ["Images", "Video"])
if __name__ == "__main__":
demo.launch() |