File size: 10,174 Bytes
9e5b4bd 988450a f91691d a7b84e5 4e55f8f 012faab 988450a 4e55f8f 988450a 4e55f8f 1984dbe 988450a 4e55f8f 988450a 246d50e 988450a 4e55f8f 246d50e 4e55f8f 988450a fe3240a 988450a 9e5b4bd f91691d fe3240a f91691d 36812fc f91691d a7b84e5 9e5b4bd 4e55f8f fe3240a 79a32e1 988450a 36812fc f91691d 36812fc f91691d 36812fc f91691d 9e5b4bd 988450a 9e5b4bd 988450a f91691d 9e5b4bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
from imports import *
from parse_info import *
#os.system("apt-get install poppler-utils")
login(token="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")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dict_ = {
0: "negative",
1: "positive",
2: "neutral"}
tokenizer_sent = AutoTokenizer.from_pretrained("nam194/sentiment", use_fast=False)
model_sent = AutoModelForSequenceClassification.from_pretrained("nam194/sentiment", num_labels=3, use_auth_token=True).to(device)
def cvt2cls(data):
data = list(set(data))
try:
data.remove(20)
except:
pass
for i, num in enumerate(data):
if num == 20:
continue
if num>=10:
data[i] -= 10
return data
ner_tags = {0: 'B-chỗ để xe', 1: 'B-con người', 2: 'B-công việc', 3: 'B-cơ sở vật chất', 4: 'B-dự án', 5: 'B-lương', 6: 'B-môi trường làm việc', 7: 'B-ot/thời gian', 8: 'B-văn phòng', 9: 'B-đãi ngộ', 10: 'I-chỗ để xe', 11: 'I-con người', 12: 'I-công việc', 13: 'I-cơ sở vật chất', 14: 'I-dự án', 15: 'I-lương', 16: 'I-môi trường làm việc', 17: 'I-ot/thời gian', 18: 'I-văn phòng', 19: 'I-đãi ngộ', 20: 'O'}
topic_tags = {0: 'chỗ để xe', 1: 'con người', 2: 'công việc', 3: 'cơ sở vật chất', 4: 'dự án', 5: 'lương', 6: 'môi trường làm việc', 7: 'ot/thời gian', 8: 'văn phòng', 9: 'đãi ngộ'}
config = RobertaConfig.from_pretrained("nam194/ner", num_labels=21)
tokenizer_topic = AutoTokenizer.from_pretrained("nam194/ner", use_fast=False)
model_topic = PhoBertLstmCrf.from_pretrained("nam194/ner", config=config, from_tf=False).to(device)
model_topic.resize_token_embeddings(len(tokenizer_topic))
def sentiment(sent: str):
sent_ = normalize(text=sent) # segment input sentence, maybe raise ConnectionError: HTTPConnectionPool())
input_sent = torch.tensor([tokenizer_sent.encode(sent_)]).to(device)
with torch.no_grad():
out_sent = model_sent(input_sent)
logits_sent = out_sent.logits.softmax(dim=-1).tolist()[0]
pred_sent = dict_[np.argmax(logits_sent)]
sent = replace_all(text=sent) # segment input sentence, maybe raise ConnectionError: HTTPConnectionPool())
sent_segment = sent.split(".")
for i, s in enumerate(sent_segment):
s = s.strip()
sent_segment[i] = underthesea.word_tokenize(s, format="text").split()
dump = [[i, 'O'] for s in sent_segment for i in s]
dump_set = NerDataset(feature_for_phobert([dump], tokenizer=tokenizer_topic, use_crf=True))
dump_iter = DataLoader(dump_set, batch_size=1)
with torch.no_grad():
for idx, batch in enumerate(dump_iter):
batch = { k:v.to(device) for k, v in batch.items() }
outputs = model_topic(**batch)
pred_topic = list(set([topic_tags[i] for i in cvt2cls(outputs["tags"][0])]))
return "Sentiment: " + pred_sent + "\n" + "Topic in sentence: " + ". ".join([i.capitalize() for i in pred_topic]) # str({"sentiment": pred_sent, "topic": pred_topic})
processor = transformers.AutoProcessor.from_pretrained("nam194/resume_parsing_layoutlmv3_large_custom_label", use_auth_token=True, apply_ocr=False)
model = transformers.LayoutLMv3ForTokenClassification.from_pretrained("nam194/resume_parsing_layoutlmv3_large_custom_label").to(device)
label_list = ['person_name', 'dob_key', 'dob_value', 'gender_key', 'gender_value', 'phonenumber_key', 'phonenumber_value', 'email_key', 'email_value',
'address_key', 'address_value', 'socical_address_value', 'education', 'education_name', 'education_time', 'experience', 'experience_name',
'experience_time', 'information', 'undefined', 'designation_key', 'designation_value', 'degree_key', 'degree_value', 'skill_key', 'skill_value']
id2label = {0: 'person_name', 1: 'dob_key', 2: 'dob_value', 3: 'gender_key', 4: 'gender_value', 5: 'phonenumber_key', 6: 'phonenumber_value',
7: 'email_key', 8: 'email_value', 9: 'address_key', 10: 'address_value', 11: 'socical_address_value', 12: 'education', 13: 'education_name',
14: 'education_time', 15: 'experience', 16: 'experience_name', 17: 'experience_time', 18: 'information', 19: 'undefined', 20: 'designation_key',
21: 'designation_value', 22: 'degree_key', 23: 'degree_value', 24: 'skill_key', 25: 'skill_value'}
key_list = ["person_name","dob_value","gender_value","phonenumber_value","email_value","address_value",
"socical_address_value","education_name","education_time","experience_name","experience_time",
"designation_value","degree_value","skill_value"]
label2id = {v: k for k, v in id2label.items()}
def pred_resume(pdf_path) -> dict:
global key_list, device
result = {}
for i in key_list:
result[i] = []
DPI = 200/77
global label_list, id2label, label2id
# read pdf, convert to img
doc = fitz.open(pdf_path.name)
num_pages = len(doc)
images = pdf2image.convert_from_path(pdf_path.name)
block_dict = {}
# get all data in pdf
page_num = 1
for page in doc:
file_dict = page.get_text('dict')
block = file_dict['blocks']
block_dict[page_num] = block
page_num += 1
# predict each page in pdf
for page_num, blocks in block_dict.items():
bboxes, words = [], [] # store bounding boxes, text in a page
image = images[page_num-1]
for block in blocks:
if block['type'] == 0:
for line in block['lines']:
for span in line['spans']:
xmin, ymin, xmax, ymax = [int(i)*DPI for i in list(span['bbox'])]
text = unidecode(span['text']).strip()
if text.replace(" ","") != "":
bboxes.append(normalize_bbox([xmin, ymin, xmax, ymax], image.size))
words.append(decontracted(text))
fake_label = ["O"] * len(words)
encoding = processor(image, words, boxes=bboxes, word_labels=fake_label, truncation=True, stride=256,
padding="max_length", max_length=512, return_overflowing_tokens=True, return_offsets_mapping=True)
labels = encoding["labels"]
offset_mapping = encoding.pop('offset_mapping')
overflow_to_sample_mapping = encoding.pop('overflow_to_sample_mapping')
encoding = {k: torch.tensor(v) for k,v in encoding.items() if k != "labels"}
x = []
for i in range(0, len(encoding['pixel_values'])):
x.append(encoding['pixel_values'][i])
x = torch.stack(x)
encoding['pixel_values'] = x
# forawrd to model
with torch.no_grad():
outputs = model(**{k: v.to(device) for k,v in encoding.items() if k != "labels"})
# process output
predictions = outputs["logits"].argmax(-1).squeeze().tolist()
if outputs["logits"].shape[0] > 1:
for i, label in enumerate(labels):
if i>0:
labels[i] = labels[i][256:]
predictions[i] = predictions[i][256:]
predictions = [j for i in predictions for j in i]
labels = [j for i in labels for j in i]
true_predictions = [id2label[pred] for pred, label in zip(predictions, labels) if label != -100]
for i, pred in enumerate(true_predictions):
if pred in key_list:
result[pred].append(words[i])
return str(result)
def norm(result: str) -> str:
result = ast.literal_eval(result)
result["person_name"] = " ".join([parse_string(i).capitalize() for i in " ".join(result["person_name"]).split()])
result["email_value"] = parse_email(result["email_value"])
result["phonenumber_value"] = "".join([i for i in "".join(result["phonenumber_value"]) if i.isdigit()])
result["address_value"] = parse_address(result["address_value"])
result["designation_value"] = parse_designation(result["designation_value"])
result["experience_time"] = parse_time(result["experience_time"])
result["gender_value"] = parse_gender(result["gender_value"])
result["skill_value"] = parse_skill(result["skill_value"])
result["education_name"] = parse_designation(result["education_name"])
result["experience_name"] = parse_designation(result["experience_name"])
return "Tên: "+result["person_name"]+"\n"+"Ngày sinh: "+result["dob_value"]+"\n"+"Giới tính: "+result["gender_value"]+"\n"+"Chức danh: "+result["designation_value"]+"\n"+"Số điện thoại: "+result["phonenumber_value"]+"\n"+"Email: "+result["email_value"]+"\n"+"Địa chỉ: "+result["address_value"]+"Tên cơ quan/công việc: "+result["experience_name"]+"\n"+"Kỹ năng: "+result["skill_value"]+"\n"+"Năm kinh nghiệm: "+result["experience_time"]
with gr.Blocks() as demo:
gr.Markdown("Demo projects Review Company and Resume parser phase 1.")
with gr.Tab("Review Company"):
text_input = gr.Textbox(label="Input sentence (ex: Sếp tốt, bảo hiểm đóng full lương bảo hiểm cho nhân viên. Hàng năm tăng lương ổn OT không trả thêm tiền, chỉ cho ngày nghỉ và hỗ trợ ăn tối.):", placeholder="input here...")
text_output = gr.Textbox(label="Result:")
text_button = gr.Button("Predict")
with gr.Tab("Extract infomation from resume"):
with gr.Column():
file_input = gr.File(label="Upload pdf", file_types=[".pdf"])
with gr.Column():
cv_output = gr.Textbox(label="Information fields")
resume_button = gr.Button("Extract")
with gr.Column():
normalize_output = gr.Textbox(label="Normalize by rule-based:")
normalize_button = gr.Button("Normailze")
# with gr.Accordion("Open for More!"):
# gr.Markdown("Look at me...")
text_button.click(sentiment, inputs=text_input, outputs=text_output)
resume_button.click(pred_resume, inputs=file_input, outputs=cv_output)
normalize_button.click(norm, inputs=cv_output, outputs=normalize_output)
demo.launch() |