nam194 commited on
Commit
fe3240a
1 Parent(s): dfc3c55

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -7
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import numpy as np
 
2
  import gradio as gr
3
  from imports import *
4
  from huggingface_hub import login
@@ -51,29 +52,37 @@ def sentiment(sent: str):
51
  batch = { k:v.to(device) for k, v in batch.items() }
52
  outputs = model_topic(**batch)
53
  pred_topic = list(set([topic_tags[i] for i in cvt2cls(outputs["tags"][0])]))
54
- return str({"sentiment": pred_sent, "topic": pred_topic})
55
 
56
 
57
- def flip_image(x):
58
- return np.fliplr(x)
 
 
 
 
 
 
 
 
59
 
60
 
61
  with gr.Blocks() as demo:
62
  gr.Markdown("Demo projects Review Company and Resume parser phase 1.")
63
  with gr.Tab("Review Company"):
64
- text_input = gr.Textbox(label="Input sentence (Ex: Sếp tốt, bảo hiểm đóng full lương bảo hiểm cho nhân viên. Hàng năm tăng lương ổn OT không trả thêm tiền, chỉ cho ngày nghỉ và hỗ trợ ăn tối.):", placeholder="input here...")
65
  text_output = gr.Textbox(label="Result:")
66
  text_button = gr.Button("Predict")
67
  with gr.Tab("Extract infomation from resume"):
68
  with gr.Row():
69
- image_input = gr.Image()
70
- image_output = gr.Image()
71
  image_button = gr.Button("Predict")
72
 
73
  # with gr.Accordion("Open for More!"):
74
  # gr.Markdown("Look at me...")
75
 
76
  text_button.click(sentiment, inputs=text_input, outputs=text_output)
77
- image_button.click(flip_image, inputs=image_input, outputs=image_output)
78
 
79
  demo.launch()
 
1
  import numpy as np
2
+ import pdf2image
3
  import gradio as gr
4
  from imports import *
5
  from huggingface_hub import login
 
52
  batch = { k:v.to(device) for k, v in batch.items() }
53
  outputs = model_topic(**batch)
54
  pred_topic = list(set([topic_tags[i] for i in cvt2cls(outputs["tags"][0])]))
55
+ return "Sentiment: " + pred_sent + "\n" + "Topic in sentence: " + ". ".join([i.capitalize() for i in pred_topic]) # str({"sentiment": pred_sent, "topic": pred_topic})
56
 
57
 
58
+ def pdf_to_imgs(pdf):
59
+ path_to_pdf = pdf.name
60
+
61
+ # convert PDF to PIL images (one image by page)
62
+ first_page = True # we want here only the first page as image
63
+ if first_page: last_page = 1
64
+ else: last_page = None
65
+
66
+ imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page)
67
+ return np.array(imgs[0])
68
 
69
 
70
  with gr.Blocks() as demo:
71
  gr.Markdown("Demo projects Review Company and Resume parser phase 1.")
72
  with gr.Tab("Review Company"):
73
+ text_input = gr.Textbox(label="Input sentence (ex: Sếp tốt, bảo hiểm đóng full lương bảo hiểm cho nhân viên. Hàng năm tăng lương ổn OT không trả thêm tiền, chỉ cho ngày nghỉ và hỗ trợ ăn tối.):", placeholder="input here...")
74
  text_output = gr.Textbox(label="Result:")
75
  text_button = gr.Button("Predict")
76
  with gr.Tab("Extract infomation from resume"):
77
  with gr.Row():
78
+ file_input = gr.File(label="PDF", file_types=[".pdf"])
79
+ image_output = gr.Image(type="numpy", label="Image of the first page")
80
  image_button = gr.Button("Predict")
81
 
82
  # with gr.Accordion("Open for More!"):
83
  # gr.Markdown("Look at me...")
84
 
85
  text_button.click(sentiment, inputs=text_input, outputs=text_output)
86
+ image_button.click(pdf_to_imgs, inputs=file_input, outputs=image_output)
87
 
88
  demo.launch()