File size: 20,015 Bytes
9c4a097 51c7afb f9d1bd8 9c4a097 51c7afb 9c4a097 fcd2920 9c4a097 51c7afb 9c4a097 0394b1d 9c4a097 0394b1d 9c4a097 6dacbc2 0dedc51 12c861a 6dacbc2 0dedc51 6dacbc2 f141e3f 6dacbc2 9c4a097 9e9de3d 9c4a097 6419d1f 12c861a 450e4a9 1cdf0ba 9c4a097 6419d1f 9c4a097 4b5b051 0dedc51 6dacbc2 4b5b051 9c4a097 13a09ca 0dedc51 12c861a 9c4a097 6419d1f 9c4a097 0cf95f2 9c4a097 6dacbc2 9c4a097 6dacbc2 9a5e9c3 0cf95f2 60711cf 6dacbc2 12c861a 9a5e9c3 6dacbc2 9c4a097 2a17ed0 4b5b051 0dedc51 6dacbc2 4b5b051 9c4a097 13a09ca 0dedc51 12c861a 9c4a097 6419d1f f9d1bd8 9c4a097 bf52482 06ab2d0 bf52482 4b5b051 bf52482 4b5b051 0dedc51 bf52482 4b5b051 bf52482 0dedc51 bf52482 4b5b051 bf52482 4b5b051 0dedc51 bf52482 4b5b051 9c4a097 0dedc51 bf52482 13a09ca 12c861a 9c4a097 6419d1f 9c4a097 9a5e9c3 9c4a097 12c861a 9a5e9c3 9c4a097 4b5b051 0dedc51 9c4a097 4b5b051 9c4a097 0dedc51 9c4a097 13a09ca 12c861a 9c4a097 6419d1f 9c4a097 f9d1bd8 9c4a097 f9d1bd8 9c4a097 9a5e9c3 9c4a097 12c861a 9a5e9c3 9c4a097 4b5b051 0dedc51 9c4a097 4b5b051 9c4a097 0dedc51 9c4a097 13a09ca 12c861a 9c4a097 860d770 9c4a097 0c3a8f3 0dedc51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import os
import csv
import json
import docx
import pptx
import re
import nltk
import time
import PyPDF2
import tempfile
import openpyxl
import requests
import gradio as gr
from bs4 import BeautifulSoup
import xml.etree.ElementTree as ET
from nltk.tokenize import word_tokenize
from langchain_community.vectorstores import FAISS
from youtube_transcript_api import YouTubeTranscriptApi
from langchain.schema import SystemMessage, HumanMessage, AIMessage
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_community.embeddings import SentenceTransformerEmbeddings
from youtube_transcript_api._errors import NoTranscriptFound, TranscriptsDisabled, VideoUnavailable
nltk.download('punkt')
nltk.download('omw-1.4')
nltk.download('wordnet')
def read_csv(file_path):
with open(file_path, 'r', encoding='utf-8', errors='ignore', newline='') as csvfile:
csv_reader = csv.reader(csvfile)
csv_data = [row for row in csv_reader]
return ' '.join([' '.join(row) for row in csv_data])
def read_text(file_path):
with open(file_path, 'r', encoding='utf-8', errors='ignore', newline='') as f:
return f.read()
def read_pdf(file_path):
text_data = []
with open(file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
for page in pdf_reader.pages:
text_data.append(page.extract_text())
return '\n'.join(text_data)
def read_docx(file_path):
doc = docx.Document(file_path)
return '\n'.join([paragraph.text for paragraph in doc.paragraphs])
def read_pptx(file_path):
ppt = pptx.Presentation(file_path)
text_data = ''
for slide in ppt.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text_data += shape.text + '\n'
return text_data
def read_xlsx(file_path):
workbook = openpyxl.load_workbook(file_path)
sheet = workbook.active
text_data = ''
for row in sheet.iter_rows(values_only=True):
text_data += ' '.join([str(cell) for cell in row if cell is not None]) + '\n'
return text_data
def read_json(file_path):
with open(file_path, 'r') as f:
json_data = json.load(f)
return json.dumps(json_data)
def read_html(file_path):
with open(file_path, 'r') as f:
html_content = f.read()
soup = BeautifulSoup(html_content, 'html.parser')
return soup
def read_xml(file_path):
tree = ET.parse(file_path)
root = tree.getroot()
return ET.tostring(root, encoding='unicode')
def process_youtube_video(url, languages=['en', 'ar']):
if 'youtube.com/watch' in url or 'youtu.be/' in url:
try:
if "v=" in url:
video_id = url.split("v=")[1].split("&")[0]
elif "youtu.be/" in url:
video_id = url.split("youtu.be/")[1].split("?")[0]
else:
return "Invalid YouTube video URL. Please provide a valid YouTube video link."
response = requests.get(f"http://img.youtube.com/vi/{video_id}/mqdefault.jpg")
if response.status_code != 200:
return "Video doesn't exist."
transcript_data = []
for lang in languages:
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=[lang])
transcript_data.append(' '.join([entry['text'] for entry in transcript]))
except (NoTranscriptFound, TranscriptsDisabled, VideoUnavailable):
continue
return ' '.join(transcript_data) if transcript_data else "Please choose a YouTube video with available English or Arabic transcripts."
except Exception as e:
return f"An error occurred: {e}"
else:
return "Invalid YouTube URL. Please provide a valid YouTube link."
def read_web_page(url):
result = requests.get(url)
if result.status_code == 200:
src = result.content
soup = BeautifulSoup(src, 'html.parser')
text_data = ''
for p in soup.find_all('p'):
text_data += p.get_text() + '\n'
return text_data
else:
return "Please provide a valid webpage link"
def read_data(file_path_or_url, languages=['en', 'ar']):
if file_path_or_url.endswith('.csv'):
return read_csv(file_path_or_url)
elif file_path_or_url.endswith('.txt'):
return read_text(file_path_or_url)
elif file_path_or_url.endswith('.pdf'):
return read_pdf(file_path_or_url)
elif file_path_or_url.endswith('.docx'):
return read_docx(file_path_or_url)
elif file_path_or_url.endswith('.pptx'):
return read_pptx(file_path_or_url)
elif file_path_or_url.endswith('.xlsx'):
return read_xlsx(file_path_or_url)
elif file_path_or_url.endswith('.json'):
return read_json(file_path_or_url)
elif file_path_or_url.endswith('.html'):
return read_html(file_path_or_url)
elif file_path_or_url.endswith('.xml'):
return read_xml(file_path_or_url)
elif 'youtube.com/watch' in file_path_or_url or 'youtu.be/' in file_path_or_url:
return process_youtube_video(file_path_or_url, languages)
elif file_path_or_url.startswith('http'):
return read_web_page(file_path_or_url)
else:
return "Unsupported type or format."
def normalize_text(text):
text = re.sub("\*?", "", text)
text = text.lower()
text = text.strip()
punctuation = '''!()[]{};:'"\<>/?$%^&*_`~='''
for punc in punctuation:
text = text.replace(punc, "")
text = re.sub(r'[A-Za-z0-9]*@[A-Za-z]*\.?[A-Za-z0-9]*', "", text)
words = word_tokenize(text)
return ' '.join(words)
chat_model = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/starchat2-15b-v0.1",
task="text-generation",
max_new_tokens=4096,
temperature=0.6,
top_p=0.9,
top_k=40,
repetition_penalty=1.2,
do_sample=True,
)
# chat_model = ChatHuggingFace(llm=llm)
model_name = "sentence-transformers/all-mpnet-base-v2"
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def user(user_message, history):
if not len(user_message):
raise gr.Error("Chat messages cannot be empty")
return "", history + [[user_message, None]]
def user2(user_message, history, link):
if not len(user_message) or not len(link):
raise gr.Error("Chat messages or links cannot be empty")
combined_message = f"{link}\n{user_message}"
return "", history + [[combined_message, None]], link
def user3(user_message, history, file_path):
if not len(user_message) or not file_path:
raise gr.Error("Chat messages or flies cannot be empty")
combined_message = f"{file_path}\n{user_message}"
return "", history + [[combined_message, None]], file_path
messages1 = [
SystemMessage(content="You are a helpful assistant."),
HumanMessage(content="Hi AI, how are you today?"),
AIMessage(content="I'm great thank you. How can I help you?")]
messages2 = messages1.copy()
messages3 = messages1.copy()
messages4 = messages1.copy()
messages5 = messages1.copy()
def Chat_Message(history):
global messages1
message=HumanMessage(content=history[-1][0])
messages1.append(message)
response = chat_model.invoke(messages1)
messages1.append(AIMessage(content=response))
if len(messages1) >= 8:
messages1 = messages1[-8:]
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.0025)
yield history
def Web_Search(history):
global messages2
message=history[-1][0]
similar_docs = db.similarity_search(message, k=3)
if similar_docs:
source_knowledge = "\n".join([x.page_content for x in similar_docs])
else:
source_knowledge = ""
augmented_prompt = f"""
You are an AI designed to help understand and extract information from provided Search Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
Query: {message}
Search Content:
{source_knowledge}
#If the query is not related to specific Search Content, engage in general conversation or provide relevant information from other sources.
"""
msg=HumanMessage(content=augmented_prompt)
messages2.append(msg)
response = chat_model.invoke(messages2)
messages2.append(AIMessage(content=response))
if len(messages2) >= 8:
messages2 = messages2[-8:]
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.0025)
yield history
def Chart_Generator(history):
global messages3
message = history[-1][0]
if '#chart' in message:
message = message.split('#chart', 1)[1].strip()
chart_url = f"https://quickchart.io/natural/{message}"
response = requests.get(chart_url)
if response.status_code == 200:
image_html = f'<img src="{chart_url}" alt="Generated Chart" style="display: block; margin: auto; max-width: 100%; max-height: 100%;">'
message_with_description = f"Describe and analyse the content of this chart: {chart_url}"
prompt = HumanMessage(content=message_with_description)
messages3.append(prompt)
response = chat_model.invoke(messages3)
messages3.append(AIMessage(content=response))
if len(messages3) >= 8:
messages3 = messages3[-8:]
combined_content = f'{image_html}<br>{response}'
else:
response_text = "Can't generate this image. Please provide valid chart details."
combined_content = response_text
else:
prompt = HumanMessage(content=message)
messages3.append(prompt)
response = chat_model.invoke(messages3)
messages3.append(AIMessage(content=response))
if len(messages3) >= 8:
messages3 = messages3[-8:]
combined_content=response
history[-1][1] = ""
for character in combined_content:
history[-1][1] += character
time.sleep(0.0025)
yield history
def Link_Scratch(history):
global messages4
combined_message = history[-1][0]
link = ""
user_message = ""
if "\n" in combined_message:
link, user_message = combined_message.split("\n", 1)
link = link.strip()
user_message = user_message.strip()
result = read_data(link)
if result in ["Unsupported type or format.", "Please provide a valid webpage link",
"Invalid YouTube URL. Please provide a valid YouTube link.",
"Please choose a YouTube video with available English or Arabic transcripts.",
"Invalid YouTube video URL. Please provide a valid YouTube video link."]:
response_message = result
else:
content_data = normalize_text(result)
if not content_data:
response_message = "The provided link is empty or does not contain any meaningful words."
else:
augmented_prompt = f"""
You are an AI designed to help understand and extract information from provided Link Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
Query: {user_message}
Link Content:
{content_data}
#If the query is not related to specific Link Content, engage in general conversation or provide relevant information from other sources.
"""
message = HumanMessage(content=augmented_prompt)
messages4.append(message)
response = chat_model.invoke(messages4)
messages4.append(AIMessage(content=response))
if len(messages4) >= 1:
messages4 = messages4[-1:]
response_message = response
history[-1][1] = ""
for character in response_message:
history[-1][1] += character
time.sleep(0.0025)
yield history
def insert_line_breaks(text, every=8):
return '\n'.join(text[i:i+every] for i in range(0, len(text), every))
def display_file_name(file):
supported_extensions = ['.csv', '.txt', '.pdf', '.docx', '.pptx', '.xlsx', '.json', '.html', '.xml']
file_extension = os.path.splitext(file.name)[1]
if file_extension.lower() in supported_extensions:
file_name = os.path.basename(file.name)
file_name_with_breaks = insert_line_breaks(file_name)
icon_url = "https://img.icons8.com/ios-filled/50/0000FF/file.png"
return f"<div style='display: flex; align-items: center;'><img src='{icon_url}' alt='file-icon' style='width: 20px; height: 20px; margin-right: 5px;'><b style='color:blue;'>{file_name_with_breaks}</b></div>"
else:
raise gr.Error("( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )")
def File_Interact(history,filepath):
global messages5
combined_message = history[-1][0]
link = ""
user_message = ""
if "\n" in combined_message:
link, user_message = combined_message.split("\n", 1)
user_message = user_message.strip()
result = read_data(filepath)
if result == "Unsupported type or format.":
response_message = result
else:
content_data = normalize_text(result)
if not content_data:
response_message = "The file is empty or does not contain any meaningful words."
else:
augmented_prompt = f"""
You are an AI designed to help understand and extract information from provided File Content. Based on the user's Query, you may need to summarize the text, answer specific questions, or provide guidance.
Query: {user_message}
File Content:
{content_data}
#If the query is not related to specific File Content, engage in general conversation or provide relevant information from other sources.
"""
message = HumanMessage(content=augmented_prompt)
messages5.append(message)
response = chat_model.invoke(messages5)
messages5.append(AIMessage(content=response))
if len(messages5) >= 1:
messages5 = messages5[-1:]
response_message = response
history[-1][1] = ""
for character in response_message:
history[-1][1] += character
time.sleep(0.0025)
yield history
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Row():
gr.Markdown("""<span style='font-weight: bold; color: blue; font-size: large;'>Choose Your Mode</span>""")
gr.Markdown("""<div style='margin-left: -120px;'><span style='font-weight: bold; color: blue; font-size: xx-large;'>IT ASSISTANT</span></div>""")
with gr.Tab("Chat-Message"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Feel Free To Ask Me Anything Or Start A Conversation On Any Topic...</span>"
)
with gr.Row():
msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
submit = gr.Button("➡️Send", scale=1)
clear = gr.ClearButton([msg, chatbot])
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chat_Message, chatbot, chatbot)
chatbot.like(print_like_dislike, None, None)
with gr.Tab("Web-Search"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Demand What You Seek, And I'll Search The Web For The Most Relevant Information...</span>"
)
with gr.Row():
msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=10, container=False)
submit = gr.Button("➡️Send", scale=1)
clear = gr.ClearButton([msg, chatbot])
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Web_Search, chatbot, chatbot)
chatbot.like(print_like_dislike, None, None)
with gr.Tab("Chart-Generator"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Request Any Chart Or Graph By Giving The Data Or A Description, And I'll Create It...</span>"
)
with gr.Row():
msg = gr.Textbox(show_label=False, placeholder="To generate a chart: type #chart [your chart description ]. To discuss the chart: type your message directly...", scale=10, container=False)
submit = gr.Button("➡️Send", scale=1)
clear = gr.ClearButton([msg, chatbot])
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
submit.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(Chart_Generator, chatbot, chatbot)
chatbot.like(print_like_dislike, None, None)
with gr.Tab("Link-Scratch"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Provide A Link Of Web page Or YouTube Video And Inquire About Its Details...</span>"
)
with gr.Row():
msg1 = gr.Textbox(show_label=False, placeholder="Paste your link...", scale=4, container=False)
msg2 = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
submit = gr.Button("➡️Send", scale=1)
clear = gr.ClearButton([msg2, chatbot, msg1])
msg1.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
msg2.submit(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
submit.click(user2, [msg2, chatbot, msg1], [msg2, chatbot, msg1], queue=True).then(Link_Scratch, chatbot, chatbot)
chatbot.like(print_like_dislike, None, None)
with gr.Tab("File-Interact"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
placeholder="<span style='font-weight: bold; color: blue; font-size: x-large;'>Upload A File And Explore Questions Related To Its Content...</span><br>( Supported File Types Only : PDF , CSV , TXT , DOCX , PPTX , XLSX , JSON , HTML , XML )"
)
with gr.Column():
with gr.Row():
filepath = gr.UploadButton("Upload a file", file_count="single", scale=1)
msg = gr.Textbox(show_label=False, placeholder="Type a message...", scale=7, container=False)
submit = gr.Button("➡️Send", scale=1)
with gr.Row():
file_output = gr.HTML("<div style='height: 20px; width: 30px;'></div>")
clear = gr.ClearButton([msg, filepath, chatbot,file_output],scale=6)
filepath.upload(display_file_name, inputs=filepath, outputs=file_output)
msg.submit(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
submit.click(user3, [msg, chatbot, file_output], [msg, chatbot, file_output], queue=True).then(File_Interact, [chatbot, filepath],chatbot)
chatbot.like(print_like_dislike, None, None)
demo.queue(max_size=10, default_concurrency_limit=4)
demo.launch(max_file_size="5mb", show_api=False, max_threads=50) |