Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,73 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
5 |
+
from langchain.schema import SystemMessage, HumanMessage, AIMessage
|
6 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
7 |
|
8 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
9 |
+
embedding_llm = SentenceTransformerEmbeddings(model_name=model_name)
|
10 |
|
11 |
+
db = FAISS.load_local("faiss_index", embedding_llm, allow_dangerous_deserialization=True)
|
12 |
+
|
13 |
+
# Set up Hugging Face model
|
14 |
+
llm = HuggingFaceEndpoint(
|
15 |
+
repo_id="HuggingFaceH4/starchat2-15b-v0.1",
|
16 |
+
task="text-generation",
|
17 |
+
max_new_tokens=4096,
|
18 |
+
temperature=0.6,
|
19 |
+
top_p=0.9,
|
20 |
+
top_k=40,
|
21 |
+
repetition_penalty=1.2,
|
22 |
+
do_sample=True,
|
23 |
+
)
|
24 |
+
chat_model = ChatHuggingFace(llm=llm)
|
25 |
+
|
26 |
+
messages = [
|
27 |
+
SystemMessage(content="You are a helpful assistant."),
|
28 |
+
HumanMessage(content="Hi AI, how are you today?"),
|
29 |
+
AIMessage(content="I'm great thank you. How can I help you?")
|
30 |
+
]
|
31 |
+
|
32 |
+
def handle_query(mode: str, query: str):
|
33 |
+
if mode == "chat":
|
34 |
+
return chat_mode(query)
|
35 |
+
elif mode == "web-search":
|
36 |
+
return web_search(query)
|
37 |
+
else:
|
38 |
+
return "Invalid mode selected."
|
39 |
+
|
40 |
+
def chat_mode(query: str):
|
41 |
+
prompt = HumanMessage(content=query)
|
42 |
+
messages.append(prompt)
|
43 |
+
response = chat_model.invoke(messages)
|
44 |
+
messages.append(response.content)
|
45 |
+
if len(messages) >= 6:
|
46 |
+
messages = messages[-6:]
|
47 |
+
return f"You: {query}\nIT-Assistant: {response.content}"
|
48 |
+
|
49 |
+
def web_search(query: str):
|
50 |
+
similar_docs = db.similarity_search(query, k=3)
|
51 |
+
if similar_docs:
|
52 |
+
source_knowledge = "\n".join([x.page_content for x in similar_docs])
|
53 |
+
else:
|
54 |
+
source_knowledge = ""
|
55 |
+
augmented_prompt = f"""
|
56 |
+
Answer the next query using the provided Web Search.
|
57 |
+
If the answer is not contained in the Web Search, ignore the web search and respond independently with your own knowledge.
|
58 |
+
|
59 |
+
Query: {query}
|
60 |
+
|
61 |
+
Web Search:
|
62 |
+
{source_knowledge}
|
63 |
+
"""
|
64 |
+
prompt = HumanMessage(content=augmented_prompt)
|
65 |
+
messages.append(prompt)
|
66 |
+
response = chat_model.invoke(messages)
|
67 |
+
messages.append(response.content)
|
68 |
+
if len(messages) >= 6:
|
69 |
+
messages = messages[-6:]
|
70 |
+
return f"You: {query}\nIT-Assistant: {response.content}"
|
71 |
+
|
72 |
+
demo = gr.Interface(fn=handle_query, inputs=["text", "text"], outputs="text", title="IT Assistant", description="Choose a mode and enter your message, then click submit to interact.", inputs_layout="vertical", choices=["chat", "web-search"])
|
73 |
demo.launch()
|