Spaces:
Running
on
A10G
Running
on
A10G
from torch import nn | |
import torch | |
from .RecSVTR import Block | |
class Swish(nn.Module): | |
def __int__(self): | |
super(Swish, self).__int__() | |
def forward(self,x): | |
return x*torch.sigmoid(x) | |
class Im2Im(nn.Module): | |
def __init__(self, in_channels, **kwargs): | |
super().__init__() | |
self.out_channels = in_channels | |
def forward(self, x): | |
return x | |
class Im2Seq(nn.Module): | |
def __init__(self, in_channels, **kwargs): | |
super().__init__() | |
self.out_channels = in_channels | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# assert H == 1 | |
x = x.reshape(B, C, H * W) | |
x = x.permute((0, 2, 1)) | |
return x | |
class EncoderWithRNN(nn.Module): | |
def __init__(self, in_channels,**kwargs): | |
super(EncoderWithRNN, self).__init__() | |
hidden_size = kwargs.get('hidden_size', 256) | |
self.out_channels = hidden_size * 2 | |
self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True) | |
def forward(self, x): | |
self.lstm.flatten_parameters() | |
x, _ = self.lstm(x) | |
return x | |
class SequenceEncoder(nn.Module): | |
def __init__(self, in_channels, encoder_type='rnn', **kwargs): | |
super(SequenceEncoder, self).__init__() | |
self.encoder_reshape = Im2Seq(in_channels) | |
self.out_channels = self.encoder_reshape.out_channels | |
self.encoder_type = encoder_type | |
if encoder_type == 'reshape': | |
self.only_reshape = True | |
else: | |
support_encoder_dict = { | |
'reshape': Im2Seq, | |
'rnn': EncoderWithRNN, | |
'svtr': EncoderWithSVTR | |
} | |
assert encoder_type in support_encoder_dict, '{} must in {}'.format( | |
encoder_type, support_encoder_dict.keys()) | |
self.encoder = support_encoder_dict[encoder_type]( | |
self.encoder_reshape.out_channels,**kwargs) | |
self.out_channels = self.encoder.out_channels | |
self.only_reshape = False | |
def forward(self, x): | |
if self.encoder_type != 'svtr': | |
x = self.encoder_reshape(x) | |
if not self.only_reshape: | |
x = self.encoder(x) | |
return x | |
else: | |
x = self.encoder(x) | |
x = self.encoder_reshape(x) | |
return x | |
class ConvBNLayer(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=0, | |
bias_attr=False, | |
groups=1, | |
act=nn.GELU): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()), | |
bias=bias_attr) | |
self.norm = nn.BatchNorm2d(out_channels) | |
self.act = Swish() | |
def forward(self, inputs): | |
out = self.conv(inputs) | |
out = self.norm(out) | |
out = self.act(out) | |
return out | |
class EncoderWithSVTR(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
dims=64, # XS | |
depth=2, | |
hidden_dims=120, | |
use_guide=False, | |
num_heads=8, | |
qkv_bias=True, | |
mlp_ratio=2.0, | |
drop_rate=0.1, | |
attn_drop_rate=0.1, | |
drop_path=0., | |
qk_scale=None): | |
super(EncoderWithSVTR, self).__init__() | |
self.depth = depth | |
self.use_guide = use_guide | |
self.conv1 = ConvBNLayer( | |
in_channels, in_channels // 8, padding=1, act='swish') | |
self.conv2 = ConvBNLayer( | |
in_channels // 8, hidden_dims, kernel_size=1, act='swish') | |
self.svtr_block = nn.ModuleList([ | |
Block( | |
dim=hidden_dims, | |
num_heads=num_heads, | |
mixer='Global', | |
HW=None, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer='swish', | |
attn_drop=attn_drop_rate, | |
drop_path=drop_path, | |
norm_layer='nn.LayerNorm', | |
epsilon=1e-05, | |
prenorm=False) for i in range(depth) | |
]) | |
self.norm = nn.LayerNorm(hidden_dims, eps=1e-6) | |
self.conv3 = ConvBNLayer( | |
hidden_dims, in_channels, kernel_size=1, act='swish') | |
# last conv-nxn, the input is concat of input tensor and conv3 output tensor | |
self.conv4 = ConvBNLayer( | |
2 * in_channels, in_channels // 8, padding=1, act='swish') | |
self.conv1x1 = ConvBNLayer( | |
in_channels // 8, dims, kernel_size=1, act='swish') | |
self.out_channels = dims | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
# weight initialization | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out') | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.ones_(m.weight) | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, 0, 0.01) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.ConvTranspose2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out') | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.ones_(m.weight) | |
nn.init.zeros_(m.bias) | |
def forward(self, x): | |
# for use guide | |
if self.use_guide: | |
z = x.clone() | |
z.stop_gradient = True | |
else: | |
z = x | |
# for short cut | |
h = z | |
# reduce dim | |
z = self.conv1(z) | |
z = self.conv2(z) | |
# SVTR global block | |
B, C, H, W = z.shape | |
z = z.flatten(2).permute(0, 2, 1) | |
for blk in self.svtr_block: | |
z = blk(z) | |
z = self.norm(z) | |
# last stage | |
z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2) | |
z = self.conv3(z) | |
z = torch.cat((h, z), dim=1) | |
z = self.conv1x1(self.conv4(z)) | |
return z | |
if __name__=="__main__": | |
svtrRNN = EncoderWithSVTR(56) | |
print(svtrRNN) |