File size: 6,607 Bytes
de7836d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from torch import nn
import torch
from .RecSVTR import Block

class Swish(nn.Module):
    def __int__(self):
        super(Swish, self).__int__()

    def forward(self,x):
        return x*torch.sigmoid(x)

class Im2Im(nn.Module):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_channels = in_channels

    def forward(self, x):
        return x

class Im2Seq(nn.Module):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_channels = in_channels

    def forward(self, x):
        B, C, H, W = x.shape
        # assert H == 1
        x = x.reshape(B, C, H * W)
        x = x.permute((0, 2, 1))
        return x

class EncoderWithRNN(nn.Module):
    def __init__(self, in_channels,**kwargs):
        super(EncoderWithRNN, self).__init__()
        hidden_size = kwargs.get('hidden_size', 256)
        self.out_channels = hidden_size * 2
        self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True)

    def forward(self, x):
        self.lstm.flatten_parameters()
        x, _ = self.lstm(x)
        return x

class SequenceEncoder(nn.Module):
    def __init__(self, in_channels, encoder_type='rnn',  **kwargs):
        super(SequenceEncoder, self).__init__()
        self.encoder_reshape = Im2Seq(in_channels)
        self.out_channels = self.encoder_reshape.out_channels
        self.encoder_type = encoder_type
        if encoder_type == 'reshape':
            self.only_reshape = True
        else:
            support_encoder_dict = {
                'reshape': Im2Seq,
                'rnn': EncoderWithRNN,
                'svtr': EncoderWithSVTR
            }
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
                encoder_type, support_encoder_dict.keys())

            self.encoder = support_encoder_dict[encoder_type](
                self.encoder_reshape.out_channels,**kwargs)
            self.out_channels = self.encoder.out_channels
            self.only_reshape = False

    def forward(self, x):
        if self.encoder_type != 'svtr':
            x = self.encoder_reshape(x)
            if not self.only_reshape:
                x = self.encoder(x)
            return x
        else:
            x = self.encoder(x)
            x = self.encoder_reshape(x)
            return x

class ConvBNLayer(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=0,
                 bias_attr=False,
                 groups=1,
                 act=nn.GELU):
        super().__init__()
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            # weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
            bias=bias_attr)
        self.norm = nn.BatchNorm2d(out_channels)
        self.act = Swish()

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        out = self.act(out)
        return out


class EncoderWithSVTR(nn.Module):
    def __init__(
            self,
            in_channels,
            dims=64,  # XS
            depth=2,
            hidden_dims=120,
            use_guide=False,
            num_heads=8,
            qkv_bias=True,
            mlp_ratio=2.0,
            drop_rate=0.1,
            attn_drop_rate=0.1,
            drop_path=0.,
            qk_scale=None):
        super(EncoderWithSVTR, self).__init__()
        self.depth = depth
        self.use_guide = use_guide
        self.conv1 = ConvBNLayer(
            in_channels, in_channels // 8, padding=1, act='swish')
        self.conv2 = ConvBNLayer(
            in_channels // 8, hidden_dims, kernel_size=1, act='swish')

        self.svtr_block = nn.ModuleList([
            Block(
                dim=hidden_dims,
                num_heads=num_heads,
                mixer='Global',
                HW=None,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer='swish',
                attn_drop=attn_drop_rate,
                drop_path=drop_path,
                norm_layer='nn.LayerNorm',
                epsilon=1e-05,
                prenorm=False) for i in range(depth)
        ])
        self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
        self.conv3 = ConvBNLayer(
            hidden_dims, in_channels, kernel_size=1, act='swish')
        # last conv-nxn, the input is concat of input tensor and conv3 output tensor
        self.conv4 = ConvBNLayer(
            2 * in_channels, in_channels // 8, padding=1, act='swish')

        self.conv1x1 = ConvBNLayer(
            in_channels // 8, dims, kernel_size=1, act='swish')
        self.out_channels = dims
        self.apply(self._init_weights)

    def _init_weights(self, m):
        # weight initialization
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out')
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.ones_(m.weight)
            nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, 0, 0.01)
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, nn.ConvTranspose2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out')
            if m.bias is not None:
                nn.init.zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            nn.init.ones_(m.weight)
            nn.init.zeros_(m.bias)

    def forward(self, x):
        # for use guide
        if self.use_guide:
            z = x.clone()
            z.stop_gradient = True
        else:
            z = x
        # for short cut
        h = z
        # reduce dim
        z = self.conv1(z)
        z = self.conv2(z)
        # SVTR global block
        B, C, H, W = z.shape
        z = z.flatten(2).permute(0, 2, 1)

        for blk in self.svtr_block:
            z = blk(z)

        z = self.norm(z)
        # last stage
        z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2)
        z = self.conv3(z)
        z = torch.cat((h, z), dim=1)
        z = self.conv1x1(self.conv4(z))

        return z

if __name__=="__main__":
    svtrRNN = EncoderWithSVTR(56)
    print(svtrRNN)