Spaces:
Running
on
A10G
Running
on
A10G
File size: 17,611 Bytes
de7836d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import os
import numpy as np
import cv2
import random
import math
from PIL import Image, ImageDraw, ImageFont
from torch.utils.data import Dataset, DataLoader
from dataset_util import load, show_bbox_on_image
phrase_list = [
', content and position of the texts are ',
', textual material depicted in the image are ',
', texts that says ',
', captions shown in the snapshot are ',
', with the words of ',
', that reads ',
', the written materials on the picture: ',
', these texts are written on it: ',
', captions are ',
', content of the text in the graphic is '
]
def insert_spaces(string, nSpace):
if nSpace == 0:
return string
new_string = ""
for char in string:
new_string += char + " " * nSpace
return new_string[:-nSpace]
def draw_glyph(font, text):
g_size = 50
W, H = (512, 80)
new_font = font.font_variant(size=g_size)
img = Image.new(mode='1', size=(W, H), color=0)
draw = ImageDraw.Draw(img)
left, top, right, bottom = new_font.getbbox(text)
text_width = max(right-left, 5)
text_height = max(bottom - top, 5)
ratio = min(W*0.9/text_width, H*0.9/text_height)
new_font = font.font_variant(size=int(g_size*ratio))
text_width, text_height = new_font.getsize(text)
offset_x, offset_y = new_font.getoffset(text)
x = (img.width - text_width) // 2
y = (img.height - text_height) // 2 - offset_y//2
draw.text((x, y), text, font=new_font, fill='white')
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
return img
def draw_glyph2(font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True):
enlarge_polygon = polygon*scale
rect = cv2.minAreaRect(enlarge_polygon)
box = cv2.boxPoints(rect)
box = np.int0(box)
w, h = rect[1]
angle = rect[2]
if angle < -45:
angle += 90
angle = -angle
if w < h:
angle += 90
vert = False
if (abs(angle) % 90 < vertAng or abs(90-abs(angle) % 90) % 90 < vertAng):
_w = max(box[:, 0]) - min(box[:, 0])
_h = max(box[:, 1]) - min(box[:, 1])
if _h >= _w:
vert = True
angle = 0
img = np.zeros((height*scale, width*scale, 3), np.uint8)
img = Image.fromarray(img)
# infer font size
image4ratio = Image.new("RGB", img.size, "white")
draw = ImageDraw.Draw(image4ratio)
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
text_w = min(w, h) * (_tw / _th)
if text_w <= max(w, h):
# add space
if len(text) > 1 and not vert and add_space:
for i in range(1, 100):
text_space = insert_spaces(text, i)
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font)
if min(w, h) * (_tw2 / _th2) > max(w, h):
break
text = insert_spaces(text, i-1)
font_size = min(w, h)*0.80
else:
shrink = 0.75 if vert else 0.85
font_size = min(w, h) / (text_w/max(w, h)) * shrink
new_font = font.font_variant(size=int(font_size))
left, top, right, bottom = new_font.getbbox(text)
text_width = right-left
text_height = bottom - top
layer = Image.new('RGBA', img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(layer)
if not vert:
draw.text((rect[0][0]-text_width//2, rect[0][1]-text_height//2-top), text, font=new_font, fill=(255, 255, 255, 255))
else:
x_s = min(box[:, 0]) + _w//2 - text_height//2
y_s = min(box[:, 1])
for c in text:
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
_, _t, _, _b = new_font.getbbox(c)
y_s += _b
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1]))
x_offset = int((img.width - rotated_layer.width) / 2)
y_offset = int((img.height - rotated_layer.height) / 2)
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer)
img = np.expand_dims(np.array(img.convert('1')), axis=2).astype(np.float64)
return img
def get_caption_pos(ori_caption, pos_idxs, prob=1.0, place_holder='*'):
idx2pos = {
0: " top left",
1: " top",
2: " top right",
3: " left",
4: random.choice([" middle", " center"]),
5: " right",
6: " bottom left",
7: " bottom",
8: " bottom right"
}
new_caption = ori_caption + random.choice(phrase_list)
pos = ''
for i in range(len(pos_idxs)):
if random.random() < prob and pos_idxs[i] > 0:
pos += place_holder + random.choice([' located', ' placed', ' positioned', '']) + random.choice([' at', ' in', ' on']) + idx2pos[pos_idxs[i]] + ', '
else:
pos += place_holder + ' , '
pos = pos[:-2] + '.'
new_caption += pos
return new_caption
def generate_random_rectangles(w, h, box_num):
rectangles = []
for i in range(box_num):
x = random.randint(0, w)
y = random.randint(0, h)
w = random.randint(16, 256)
h = random.randint(16, 96)
angle = random.randint(-45, 45)
p1 = (x, y)
p2 = (x + w, y)
p3 = (x + w, y + h)
p4 = (x, y + h)
center = ((x + x + w) / 2, (y + y + h) / 2)
p1 = rotate_point(p1, center, angle)
p2 = rotate_point(p2, center, angle)
p3 = rotate_point(p3, center, angle)
p4 = rotate_point(p4, center, angle)
rectangles.append((p1, p2, p3, p4))
return rectangles
def rotate_point(point, center, angle):
# rotation
angle = math.radians(angle)
x = point[0] - center[0]
y = point[1] - center[1]
x1 = x * math.cos(angle) - y * math.sin(angle)
y1 = x * math.sin(angle) + y * math.cos(angle)
x1 += center[0]
y1 += center[1]
return int(x1), int(y1)
class T3DataSet(Dataset):
def __init__(
self,
json_path,
max_lines=5,
max_chars=20,
place_holder='*',
font_path='./font/Arial_Unicode.ttf',
caption_pos_prob=1.0,
mask_pos_prob=1.0,
mask_img_prob=0.5,
for_show=False,
using_dlc=False,
glyph_scale=1,
percent=1.0,
debug=False,
wm_thresh=1.0,
):
assert isinstance(json_path, (str, list))
if isinstance(json_path, str):
json_path = [json_path]
data_list = []
self.using_dlc = using_dlc
self.max_lines = max_lines
self.max_chars = max_chars
self.place_holder = place_holder
self.font = ImageFont.truetype(font_path, size=60)
self.caption_pos_porb = caption_pos_prob
self.mask_pos_prob = mask_pos_prob
self.mask_img_prob = mask_img_prob
self.for_show = for_show
self.glyph_scale = glyph_scale
self.wm_thresh = wm_thresh
for jp in json_path:
data_list += self.load_data(jp, percent)
self.data_list = data_list
print(f'All dataset loaded, imgs={len(self.data_list)}')
self.debug = debug
if self.debug:
self.tmp_items = [i for i in range(100)]
def load_data(self, json_path, percent):
content = load(json_path)
d = []
count = 0
wm_skip = 0
max_img = len(content['data_list']) * percent
for gt in content['data_list']:
if len(d) > max_img:
break
if 'wm_score' in gt and gt['wm_score'] > self.wm_thresh: # wm_score > thresh will be skiped as an img with watermark
wm_skip += 1
continue
data_root = content['data_root']
if self.using_dlc:
data_root = data_root.replace('/data/vdb', '/mnt/data', 1)
img_path = os.path.join(data_root, gt['img_name'])
info = {}
info['img_path'] = img_path
info['caption'] = gt['caption'] if 'caption' in gt else ''
if self.place_holder in info['caption']:
count += 1
info['caption'] = info['caption'].replace(self.place_holder, " ")
if 'annotations' in gt:
polygons = []
invalid_polygons = []
texts = []
languages = []
pos = []
for annotation in gt['annotations']:
if len(annotation['polygon']) == 0:
continue
if 'valid' in annotation and annotation['valid'] is False:
invalid_polygons.append(annotation['polygon'])
continue
polygons.append(annotation['polygon'])
texts.append(annotation['text'])
languages.append(annotation['language'])
if 'pos' in annotation:
pos.append(annotation['pos'])
info['polygons'] = [np.array(i) for i in polygons]
info['invalid_polygons'] = [np.array(i) for i in invalid_polygons]
info['texts'] = texts
info['language'] = languages
info['pos'] = pos
d.append(info)
print(f'{json_path} loaded, imgs={len(d)}, wm_skip={wm_skip}')
if count > 0:
print(f"Found {count} image's caption contain placeholder: {self.place_holder}, change to ' '...")
return d
def __getitem__(self, item):
item_dict = {}
if self.debug: # sample fixed items
item = self.tmp_items.pop()
print(f'item = {item}')
cur_item = self.data_list[item]
# img
target = np.array(Image.open(cur_item['img_path']).convert('RGB'))
if target.shape[0] != 512 or target.shape[1] != 512:
target = cv2.resize(target, (512, 512))
target = (target.astype(np.float32) / 127.5) - 1.0
item_dict['img'] = target
# caption
item_dict['caption'] = cur_item['caption']
item_dict['glyphs'] = []
item_dict['gly_line'] = []
item_dict['positions'] = []
item_dict['texts'] = []
item_dict['language'] = []
item_dict['inv_mask'] = []
texts = cur_item.get('texts', [])
if len(texts) > 0:
idxs = [i for i in range(len(texts))]
if len(texts) > self.max_lines:
sel_idxs = random.sample(idxs, self.max_lines)
unsel_idxs = [i for i in idxs if i not in sel_idxs]
else:
sel_idxs = idxs
unsel_idxs = []
if len(cur_item['pos']) > 0:
pos_idxs = [cur_item['pos'][i] for i in sel_idxs]
else:
pos_idxs = [-1 for i in sel_idxs]
item_dict['caption'] = get_caption_pos(item_dict['caption'], pos_idxs, self.caption_pos_porb, self.place_holder)
item_dict['polygons'] = [cur_item['polygons'][i] for i in sel_idxs]
item_dict['texts'] = [cur_item['texts'][i][:self.max_chars] for i in sel_idxs]
item_dict['language'] = [cur_item['language'][i] for i in sel_idxs]
# glyphs
for idx, text in enumerate(item_dict['texts']):
gly_line = draw_glyph(self.font, text)
glyphs = draw_glyph2(self.font, text, item_dict['polygons'][idx], scale=self.glyph_scale)
item_dict['glyphs'] += [glyphs]
item_dict['gly_line'] += [gly_line]
# mask_pos
for polygon in item_dict['polygons']:
item_dict['positions'] += [self.draw_pos(polygon, self.mask_pos_prob)]
# inv_mask
invalid_polygons = cur_item['invalid_polygons'] if 'invalid_polygons' in cur_item else []
if len(texts) > 0:
invalid_polygons += [cur_item['polygons'][i] for i in unsel_idxs]
item_dict['inv_mask'] = self.draw_inv_mask(invalid_polygons)
item_dict['hint'] = self.get_hint(item_dict['positions'])
if random.random() < self.mask_img_prob:
# randomly generate 0~3 masks
box_num = random.randint(0, 3)
boxes = generate_random_rectangles(512, 512, box_num)
boxes = np.array(boxes)
pos_list = item_dict['positions'].copy()
for i in range(box_num):
pos_list += [self.draw_pos(boxes[i], self.mask_pos_prob)]
mask = self.get_hint(pos_list)
masked_img = target*(1-mask)
else:
masked_img = np.zeros_like(target)
item_dict['masked_img'] = masked_img
if self.for_show:
item_dict['img_name'] = os.path.split(cur_item['img_path'])[-1]
return item_dict
if len(texts) > 0:
del item_dict['polygons']
# padding
n_lines = min(len(texts), self.max_lines)
item_dict['n_lines'] = n_lines
n_pad = self.max_lines - n_lines
if n_pad > 0:
item_dict['glyphs'] += [np.zeros((512*self.glyph_scale, 512*self.glyph_scale, 1))] * n_pad
item_dict['gly_line'] += [np.zeros((80, 512, 1))] * n_pad
item_dict['positions'] += [np.zeros((512, 512, 1))] * n_pad
item_dict['texts'] += [' '] * n_pad
item_dict['language'] += [' '] * n_pad
return item_dict
def __len__(self):
return len(self.data_list)
def draw_inv_mask(self, polygons):
img = np.zeros((512, 512))
for p in polygons:
pts = p.reshape((-1, 1, 2))
cv2.fillPoly(img, [pts], color=255)
img = img[..., None]
return img/255.
def draw_pos(self, ploygon, prob=1.0):
img = np.zeros((512, 512))
rect = cv2.minAreaRect(ploygon)
w, h = rect[1]
small = False
if w < 20 or h < 20:
small = True
if random.random() < prob:
pts = ploygon.reshape((-1, 1, 2))
cv2.fillPoly(img, [pts], color=255)
# 10% dilate / 10% erode / 5% dilatex2 5% erodex2
random_value = random.random()
kernel = np.ones((3, 3), dtype=np.uint8)
if random_value < 0.7:
pass
elif random_value < 0.8:
img = cv2.dilate(img.astype(np.uint8), kernel, iterations=1)
elif random_value < 0.9 and not small:
img = cv2.erode(img.astype(np.uint8), kernel, iterations=1)
elif random_value < 0.95:
img = cv2.dilate(img.astype(np.uint8), kernel, iterations=2)
elif random_value < 1.0 and not small:
img = cv2.erode(img.astype(np.uint8), kernel, iterations=2)
img = img[..., None]
return img/255.
def get_hint(self, positions):
if len(positions) == 0:
return np.zeros((512, 512, 1))
return np.sum(positions, axis=0).clip(0, 1)
if __name__ == '__main__':
'''
Run this script to show details of your dataset, such as ocr annotations, glyphs, prompts, etc.
'''
from tqdm import tqdm
from matplotlib import pyplot as plt
import shutil
show_imgs_dir = 'show_results'
show_count = 50
if os.path.exists(show_imgs_dir):
shutil.rmtree(show_imgs_dir)
os.makedirs(show_imgs_dir)
plt.rcParams['axes.unicode_minus'] = False
json_paths = [
'/path/of/your/dataset/data1.json',
'/path/of/your/dataset/data2.json',
# ...
]
dataset = T3DataSet(json_paths, for_show=True, max_lines=20, glyph_scale=2, mask_img_prob=1.0, caption_pos_prob=0.0)
train_loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
pbar = tqdm(total=show_count)
for i, data in enumerate(train_loader):
if i == show_count:
break
img = ((data['img'][0].numpy() + 1.0) / 2.0 * 255).astype(np.uint8)
masked_img = ((data['masked_img'][0].numpy() + 1.0) / 2.0 * 255)[..., ::-1].astype(np.uint8)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_masked.jpg'), masked_img)
if 'texts' in data and len(data['texts']) > 0:
texts = [x[0] for x in data['texts']]
img = show_bbox_on_image(Image.fromarray(img), data['polygons'], texts)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}.jpg'), np.array(img)[..., ::-1])
with open(os.path.join(show_imgs_dir, f'plots_{i}.txt'), 'w') as fin:
fin.writelines([data['caption'][0]])
all_glyphs = []
for k, glyphs in enumerate(data['glyphs']):
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_glyph_{k}.jpg'), glyphs[0].numpy().astype(np.int32)*255)
all_glyphs += [glyphs[0].numpy().astype(np.int32)*255]
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_allglyphs.jpg'), np.sum(all_glyphs, axis=0))
for k, gly_line in enumerate(data['gly_line']):
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_gly_line_{k}.jpg'), gly_line[0].numpy().astype(np.int32)*255)
for k, position in enumerate(data['positions']):
if position is not None:
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_pos_{k}.jpg'), position[0].numpy().astype(np.int32)*255)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_hint.jpg'), data['hint'][0].numpy().astype(np.int32)*255)
cv2.imwrite(os.path.join(show_imgs_dir, f'plots_{i}_inv_mask.jpg'), np.array(img)[..., ::-1]*(1-data['inv_mask'][0].numpy().astype(np.int32)))
pbar.update(1)
pbar.close()
|