minigpt4.cpp / minigpt4_library.py
maknee's picture
Update lookfor
8887c15
raw
history blame
27.2 kB
import os
import sys
import ctypes
import pathlib
from typing import Optional, List
import enum
from pathlib import Path
class DataType(enum.IntEnum):
def __str__(self):
return str(self.name)
F16 = 0
F32 = 1
I32 = 2
L64 = 3
Q4_0 = 4
Q4_1 = 5
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
class Verbosity(enum.IntEnum):
SILENT = 0
ERR = 1
INFO = 2
DEBUG = 3
class ImageFormat(enum.IntEnum):
UNKNOWN = 0
F32 = 1
U8 = 2
I32 = ctypes.c_int32
U32 = ctypes.c_uint32
F32 = ctypes.c_float
SIZE_T = ctypes.c_size_t
VOID_PTR = ctypes.c_void_p
CHAR_PTR = ctypes.POINTER(ctypes.c_char)
FLOAT_PTR = ctypes.POINTER(ctypes.c_float)
INT_PTR = ctypes.POINTER(ctypes.c_int32)
CHAR_PTR_PTR = ctypes.POINTER(ctypes.POINTER(ctypes.c_char))
MiniGPT4ContextP = VOID_PTR
class MiniGPT4Context:
def __init__(self, ptr: ctypes.pointer):
self.ptr = ptr
class MiniGPT4Image(ctypes.Structure):
_fields_ = [
('data', VOID_PTR),
('width', I32),
('height', I32),
('channels', I32),
('format', I32)
]
class MiniGPT4Embedding(ctypes.Structure):
_fields_ = [
('data', FLOAT_PTR),
('n_embeddings', SIZE_T),
]
MiniGPT4ImageP = ctypes.POINTER(MiniGPT4Image)
MiniGPT4EmbeddingP = ctypes.POINTER(MiniGPT4Embedding)
class MiniGPT4SharedLibrary:
"""
Python wrapper around minigpt4.cpp shared library.
"""
def __init__(self, shared_library_path: str):
"""
Loads the shared library from specified file.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library_path : str
Path to minigpt4.cpp shared library. On Windows, it would look like 'minigpt4.dll'. On UNIX, 'minigpt4.so'.
"""
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
self.library.minigpt4_model_load.argtypes = [
CHAR_PTR, # const char *path
CHAR_PTR, # const char *llm_model
I32, # int verbosity
I32, # int seed
I32, # int n_ctx
I32, # int n_batch
I32, # int numa
]
self.library.minigpt4_model_load.restype = MiniGPT4ContextP
self.library.minigpt4_image_load_from_file.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR, # const char *path
MiniGPT4ImageP, # struct MiniGPT4Image *image
I32, # int flags
]
self.library.minigpt4_image_load_from_file.restype = I32
self.library.minigpt4_encode_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
MiniGPT4ImageP, # const struct MiniGPT4Image *image
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
I32, # size_t n_threads
]
self.library.minigpt4_encode_image.restype = I32
self.library.minigpt4_begin_chat_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
CHAR_PTR, # const char *s
I32, # size_t n_threads
]
self.library.minigpt4_begin_chat_image.restype = I32
self.library.minigpt4_end_chat_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR_PTR, # const char **token
I32, # size_t n_threads
F32, # float temp
I32, # int32_t top_k
F32, # float top_p
F32, # float tfs_z
F32, # float typical_p
I32, # int32_t repeat_last_n
F32, # float repeat_penalty
F32, # float alpha_presence
F32, # float alpha_frequency
I32, # int mirostat
F32, # float mirostat_tau
F32, # float mirostat_eta
I32, # int penalize_nl
]
self.library.minigpt4_end_chat_image.restype = I32
self.library.minigpt4_system_prompt.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
I32, # size_t n_threads
]
self.library.minigpt4_system_prompt.restype = I32
self.library.minigpt4_begin_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR, # const char *s
I32, # size_t n_threads
]
self.library.minigpt4_begin_chat.restype = I32
self.library.minigpt4_end_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR_PTR, # const char **token
I32, # size_t n_threads
F32, # float temp
I32, # int32_t top_k
F32, # float top_p
F32, # float tfs_z
F32, # float typical_p
I32, # int32_t repeat_last_n
F32, # float repeat_penalty
F32, # float alpha_presence
F32, # float alpha_frequency
I32, # int mirostat
F32, # float mirostat_tau
F32, # float mirostat_eta
I32, # int penalize_nl
]
self.library.minigpt4_end_chat.restype = I32
self.library.minigpt4_reset_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
]
self.library.minigpt4_reset_chat.restype = I32
self.library.minigpt4_contains_eos_token.argtypes = [
CHAR_PTR, # const char *s
]
self.library.minigpt4_contains_eos_token.restype = I32
self.library.minigpt4_is_eos.argtypes = [
CHAR_PTR, # const char *s
]
self.library.minigpt4_is_eos.restype = I32
self.library.minigpt4_free.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
]
self.library.minigpt4_free.restype = I32
self.library.minigpt4_free_image.argtypes = [
MiniGPT4ImageP, # struct MiniGPT4Image *image
]
self.library.minigpt4_free_image.restype = I32
self.library.minigpt4_free_embedding.argtypes = [
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
]
self.library.minigpt4_free_embedding.restype = I32
self.library.minigpt4_error_code_to_string.argtypes = [
I32, # int error_code
]
self.library.minigpt4_error_code_to_string.restype = CHAR_PTR
self.library.minigpt4_quantize_model.argtypes = [
CHAR_PTR, # const char *in_path
CHAR_PTR, # const char *out_path
I32, # int data_type
]
self.library.minigpt4_quantize_model.restype = I32
self.library.minigpt4_set_verbosity.argtypes = [
I32, # int verbosity
]
self.library.minigpt4_set_verbosity.restype = None
def panic_if_error(self, error_code: int) -> None:
"""
Raises an exception if the error code is not 0.
Parameters
----------
error_code : int
Error code to check.
"""
if error_code != 0:
raise RuntimeError(self.library.minigpt4_error_code_to_string(I32(error_code)))
def minigpt4_model_load(self, model_path: str, llm_model_path: str, verbosity: int = 1, seed: int = 1337, n_ctx: int = 2048, n_batch: int = 512, numa: int = 0) -> MiniGPT4Context:
"""
Loads a model from a file.
Args:
model_path (str): Path to model file.
llm_model_path (str): Path to LLM model file.
verbosity (int): Verbosity level: 0 = silent, 1 = error, 2 = info, 3 = debug. Defaults to 0.
n_ctx (int): Size of context for llm model. Defaults to 2048.
seed (int): Seed for llm model. Defaults to 1337.
numa (int): NUMA node to use (0 = NUMA disabled, 1 = NUMA enabled). Defaults to 0.
Returns:
MiniGPT4Context: Context.
"""
ptr = self.library.minigpt4_model_load(
model_path.encode('utf-8'),
llm_model_path.encode('utf-8'),
I32(verbosity),
I32(seed),
I32(n_ctx),
I32(n_batch),
I32(numa),
)
assert ptr is not None, 'minigpt4_model_load failed'
return MiniGPT4Context(ptr)
def minigpt4_image_load_from_file(self, ctx: MiniGPT4Context, path: str, flags: int) -> MiniGPT4Image:
"""
Loads an image from a file
Args:
ctx (MiniGPT4Context): context
path (str): path
flags (int): flags
Returns:
MiniGPT4Image: image
"""
image = MiniGPT4Image()
self.panic_if_error(self.library.minigpt4_image_load_from_file(ctx.ptr, path.encode('utf-8'), ctypes.pointer(image), I32(flags)))
return image
def minigpt4_preprocess_image(self, ctx: MiniGPT4Context, image: MiniGPT4Image, flags: int = 0) -> MiniGPT4Image:
"""
Preprocesses an image
Args:
ctx (MiniGPT4Context): Context
image (MiniGPT4Image): Image
flags (int): Flags. Defaults to 0.
Returns:
MiniGPT4Image: Preprocessed image
"""
preprocessed_image = MiniGPT4Image()
self.panic_if_error(self.library.minigpt4_preprocess_image(ctx.ptr, ctypes.pointer(image), ctypes.pointer(preprocessed_image), I32(flags)))
return preprocessed_image
def minigpt4_encode_image(self, ctx: MiniGPT4Context, image: MiniGPT4Image, n_threads: int = 0) -> MiniGPT4Embedding:
"""
Encodes an image into embedding
Args:
ctx (MiniGPT4Context): Context.
image (MiniGPT4Image): Image.
n_threads (int): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
embedding (MiniGPT4Embedding): Output embedding.
"""
embedding = MiniGPT4Embedding()
self.panic_if_error(self.library.minigpt4_encode_image(ctx.ptr, ctypes.pointer(image), ctypes.pointer(embedding), n_threads))
return embedding
def minigpt4_begin_chat_image(self, ctx: MiniGPT4Context, image_embedding: MiniGPT4Embedding, s: str, n_threads: int = 0):
"""
Begins a chat with an image.
Args:
ctx (MiniGPT4Context): Context.
image_embedding (MiniGPT4Embedding): Image embedding.
s (str): Question to ask about the image.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
None
"""
self.panic_if_error(self.library.minigpt4_begin_chat_image(ctx.ptr, ctypes.pointer(image_embedding), s.encode('utf-8'), n_threads))
def minigpt4_end_chat_image(self, ctx: MiniGPT4Context, n_threads: int = 0, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1) -> str:
"""
Ends a chat with an image.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): Tfs Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penality. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat Tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat Eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
Returns:
str: Token generated.
"""
token = CHAR_PTR()
self.panic_if_error(self.library.minigpt4_end_chat_image(ctx.ptr, ctypes.pointer(token), n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl))
return ctypes.cast(token, ctypes.c_char_p).value.decode('utf-8')
def minigpt4_system_prompt(self, ctx: MiniGPT4Context, n_threads: int = 0):
"""
Generates a system prompt.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
"""
self.panic_if_error(self.library.minigpt4_system_prompt(ctx.ptr, n_threads))
def minigpt4_begin_chat(self, ctx: MiniGPT4Context, s: str, n_threads: int = 0):
"""
Begins a chat continuing after minigpt4_begin_chat_image
Args:
ctx (MiniGPT4Context): Context.
s (str): Question to ask about the image.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
None
"""
self.panic_if_error(self.library.minigpt4_begin_chat(ctx.ptr, s.encode('utf-8'), n_threads))
def minigpt4_end_chat(self, ctx: MiniGPT4Context, n_threads: int = 0, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1) -> str:
"""
Ends a chat.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): Tfs Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penality. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat Tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat Eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
Returns:
str: Token generated.
"""
token = CHAR_PTR()
self.panic_if_error(self.library.minigpt4_end_chat(ctx.ptr, ctypes.pointer(token), n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl))
return ctypes.cast(token, ctypes.c_char_p).value.decode('utf-8')
def minigpt4_reset_chat(self, ctx: MiniGPT4Context):
"""
Resets the chat.
Args:
ctx (MiniGPT4Context): Context.
"""
self.panic_if_error(self.library.minigpt4_reset_chat(ctx.ptr))
def minigpt4_contains_eos_token(self, s: str) -> bool:
"""
Checks if a string contains an EOS token.
Args:
s (str): String to check.
Returns:
bool: True if the string contains an EOS token, False otherwise.
"""
return self.library.minigpt4_contains_eos_token(s.encode('utf-8'))
def minigpt4_is_eos(self, s: str) -> bool:
"""
Checks if a string is EOS.
Args:
s (str): String to check.
Returns:
bool: True if the string contains an EOS, False otherwise.
"""
return self.library.minigpt4_is_eos(s.encode('utf-8'))
def minigpt4_free(self, ctx: MiniGPT4Context) -> None:
"""
Frees a context.
Args:
ctx (MiniGPT4Context): Context.
"""
self.panic_if_error(self.library.minigpt4_free(ctx.ptr))
def minigpt4_free_image(self, image: MiniGPT4Image) -> None:
"""
Frees an image.
Args:
image (MiniGPT4Image): Image.
"""
self.panic_if_error(self.library.minigpt4_free_image(ctypes.pointer(image)))
def minigpt4_free_embedding(self, embedding: MiniGPT4Embedding) -> None:
"""
Frees an embedding.
Args:
embedding (MiniGPT4Embedding): Embedding.
"""
self.panic_if_error(self.library.minigpt4_free_embedding(ctypes.pointer(embedding)))
def minigpt4_error_code_to_string(self, error_code: int) -> str:
"""
Converts an error code to a string.
Args:
error_code (int): Error code.
Returns:
str: Error string.
"""
return self.library.minigpt4_error_code_to_string(error_code).decode('utf-8')
def minigpt4_quantize_model(self, in_path: str, out_path: str, data_type: DataType):
"""
Quantizes a model file.
Args:
in_path (str): Path to input model file.
out_path (str): Path to write output model file.
data_type (DataType): Must be one DataType enum values.
"""
self.panic_if_error(self.library.minigpt4_quantize_model(in_path.encode('utf-8'), out_path.encode('utf-8'), data_type))
def minigpt4_set_verbosity(self, verbosity: Verbosity):
"""
Sets verbosity.
Args:
verbosity (int): Verbosity.
"""
self.library.minigpt4_set_verbosity(I32(verbosity))
def load_library() -> MiniGPT4SharedLibrary:
"""
Attempts to find minigpt4.cpp shared library and load it.
"""
file_name: str
if 'win32' in sys.platform or 'cygwin' in sys.platform:
file_name = 'minigpt4.dll'
elif 'darwin' in sys.platform:
file_name = 'libminigpt4.dylib'
else:
file_name = 'libminigpt4.so'
cwd = pathlib.Path(os.getcwd())
repo_root_dir: pathlib.Path = pathlib.Path(os.path.abspath(__file__)).parent.parent
paths = [
# If we are in "minigpt4" directory
f'../bin/Release/{file_name}',
# If we are in repo root directory
f'bin/Release/{file_name}',
# If we compiled in build directory
f'build/bin/Release/{file_name}',
# If we compiled in build directory
f'build/{file_name}',
f'../build/{file_name}',
# Search relative to this file
str(repo_root_dir / 'bin' / 'Release' / file_name),
# Fallback
str(repo_root_dir / file_name),
str(cwd / file_name)
]
for path in paths:
if os.path.isfile(path):
return MiniGPT4SharedLibrary(path)
return MiniGPT4SharedLibrary(paths[-1])
class MiniGPT4ChatBot:
def __init__(self, model_path: str, llm_model_path: str, verbosity: Verbosity = Verbosity.SILENT, n_threads: int = 0):
"""
Creates a new MiniGPT4ChatBot instance.
Args:
model_path (str): Path to model file.
llm_model_path (str): Path to language model model file.
verbosity (Verbosity, optional): Verbosity. Defaults to Verbosity.SILENT.
n_threads (int, optional): Number of threads to use. Defaults to 0.
"""
self.library = load_library()
self.ctx = self.library.minigpt4_model_load(model_path, llm_model_path, verbosity)
self.n_threads = n_threads
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
self.image_size = 224
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
self.image_size,
interpolation=InterpolationMode.BICUBIC,
),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]
)
self.embedding: Optional[MiniGPT4Embedding] = None
self.is_image_chat = False
self.chat_history = []
def free(self):
if self.ctx:
self.library.minigpt4_free(self.ctx)
def generate(self, message: str, limit: int = 1024, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1):
"""
Generates a chat response.
Args:
message (str): Message.
limit (int, optional): Limit. Defaults to 1024.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): TFS Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penalty. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
"""
if self.is_image_chat:
self.is_image_chat = False
self.library.minigpt4_begin_chat_image(self.ctx, self.embedding, message, self.n_threads)
chat = ''
for _ in range(limit):
token = self.library.minigpt4_end_chat_image(self.ctx, self.n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl)
chat += token
if self.library.minigpt4_contains_eos_token(token):
continue
if self.library.minigpt4_is_eos(chat):
break
yield token
else:
self.library.minigpt4_begin_chat(self.ctx, message, self.n_threads)
chat = ''
for _ in range(limit):
token = self.library.minigpt4_end_chat(self.ctx, self.n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl)
chat += token
if self.library.minigpt4_contains_eos_token(token):
continue
if self.library.minigpt4_is_eos(chat):
break
yield token
def reset_chat(self):
"""
Resets the chat.
"""
self.is_image_chat = False
if self.embedding:
self.library.minigpt4_free_embedding(self.embedding)
self.embedding = None
self.library.minigpt4_reset_chat(self.ctx)
self.library.minigpt4_system_prompt(self.ctx, self.n_threads)
def upload_image(self, image):
"""
Uploads an image.
Args:
image (Image): Image.
"""
self.reset_chat()
image = self.transform(image)
image = image.unsqueeze(0)
image = image.numpy()
image = image.ctypes.data_as(ctypes.c_void_p)
minigpt4_image = MiniGPT4Image(image, self.image_size, self.image_size, 3, ImageFormat.F32)
self.embedding = self.library.minigpt4_encode_image(self.ctx, minigpt4_image, self.n_threads)
self.is_image_chat = True
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Test loading minigpt4')
parser.add_argument('model_path', help='Path to model file')
parser.add_argument('llm_model_path', help='Path to llm model file')
parser.add_argument('-i', '--image_path', help='Image to test', default='images/llama.png')
parser.add_argument('-p', '--prompts', help='Text to test', default='what is the text in the picture?,what is the color of it?')
args = parser.parse_args()
model_path = args.model_path
llm_model_path = args.llm_model_path
image_path = args.image_path
prompts = args.prompts
if not Path(model_path).exists():
print(f'Model does not exist: {model_path}')
exit(1)
if not Path(llm_model_path).exists():
print(f'LLM Model does not exist: {llm_model_path}')
exit(1)
prompts = prompts.split(',')
print('Loading minigpt4 shared library...')
library = load_library()
print(f'Loaded library {library}')
ctx = library.minigpt4_model_load(model_path, llm_model_path, Verbosity.DEBUG)
image = library.minigpt4_image_load_from_file(ctx, image_path, 0)
preprocessed_image = library.minigpt4_preprocess_image(ctx, image, 0)
question = prompts[0]
n_threads = 0
embedding = library.minigpt4_encode_image(ctx, preprocessed_image, n_threads)
library.minigpt4_system_prompt(ctx, n_threads)
library.minigpt4_begin_chat_image(ctx, embedding, question, n_threads)
chat = ''
while True:
token = library.minigpt4_end_chat_image(ctx, n_threads)
chat += token
if library.minigpt4_contains_eos_token(token):
continue
if library.minigpt4_is_eos(chat):
break
print(token, end='')
for i in range(1, len(prompts)):
prompt = prompts[i]
library.minigpt4_begin_chat(ctx, prompt, n_threads)
chat = ''
while True:
token = library.minigpt4_end_chat(ctx, n_threads)
chat += token
if library.minigpt4_contains_eos_token(token):
continue
if library.minigpt4_is_eos(chat):
break
print(token, end='')
library.minigpt4_free_image(image)
library.minigpt4_free_image(preprocessed_image)
library.minigpt4_free(ctx)