Spaces:
Runtime error
Runtime error
File size: 27,190 Bytes
fec8ab6 8887c15 fec8ab6 8887c15 fec8ab6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import os
import sys
import ctypes
import pathlib
from typing import Optional, List
import enum
from pathlib import Path
class DataType(enum.IntEnum):
def __str__(self):
return str(self.name)
F16 = 0
F32 = 1
I32 = 2
L64 = 3
Q4_0 = 4
Q4_1 = 5
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
class Verbosity(enum.IntEnum):
SILENT = 0
ERR = 1
INFO = 2
DEBUG = 3
class ImageFormat(enum.IntEnum):
UNKNOWN = 0
F32 = 1
U8 = 2
I32 = ctypes.c_int32
U32 = ctypes.c_uint32
F32 = ctypes.c_float
SIZE_T = ctypes.c_size_t
VOID_PTR = ctypes.c_void_p
CHAR_PTR = ctypes.POINTER(ctypes.c_char)
FLOAT_PTR = ctypes.POINTER(ctypes.c_float)
INT_PTR = ctypes.POINTER(ctypes.c_int32)
CHAR_PTR_PTR = ctypes.POINTER(ctypes.POINTER(ctypes.c_char))
MiniGPT4ContextP = VOID_PTR
class MiniGPT4Context:
def __init__(self, ptr: ctypes.pointer):
self.ptr = ptr
class MiniGPT4Image(ctypes.Structure):
_fields_ = [
('data', VOID_PTR),
('width', I32),
('height', I32),
('channels', I32),
('format', I32)
]
class MiniGPT4Embedding(ctypes.Structure):
_fields_ = [
('data', FLOAT_PTR),
('n_embeddings', SIZE_T),
]
MiniGPT4ImageP = ctypes.POINTER(MiniGPT4Image)
MiniGPT4EmbeddingP = ctypes.POINTER(MiniGPT4Embedding)
class MiniGPT4SharedLibrary:
"""
Python wrapper around minigpt4.cpp shared library.
"""
def __init__(self, shared_library_path: str):
"""
Loads the shared library from specified file.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library_path : str
Path to minigpt4.cpp shared library. On Windows, it would look like 'minigpt4.dll'. On UNIX, 'minigpt4.so'.
"""
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
self.library.minigpt4_model_load.argtypes = [
CHAR_PTR, # const char *path
CHAR_PTR, # const char *llm_model
I32, # int verbosity
I32, # int seed
I32, # int n_ctx
I32, # int n_batch
I32, # int numa
]
self.library.minigpt4_model_load.restype = MiniGPT4ContextP
self.library.minigpt4_image_load_from_file.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR, # const char *path
MiniGPT4ImageP, # struct MiniGPT4Image *image
I32, # int flags
]
self.library.minigpt4_image_load_from_file.restype = I32
self.library.minigpt4_encode_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
MiniGPT4ImageP, # const struct MiniGPT4Image *image
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
I32, # size_t n_threads
]
self.library.minigpt4_encode_image.restype = I32
self.library.minigpt4_begin_chat_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
CHAR_PTR, # const char *s
I32, # size_t n_threads
]
self.library.minigpt4_begin_chat_image.restype = I32
self.library.minigpt4_end_chat_image.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR_PTR, # const char **token
I32, # size_t n_threads
F32, # float temp
I32, # int32_t top_k
F32, # float top_p
F32, # float tfs_z
F32, # float typical_p
I32, # int32_t repeat_last_n
F32, # float repeat_penalty
F32, # float alpha_presence
F32, # float alpha_frequency
I32, # int mirostat
F32, # float mirostat_tau
F32, # float mirostat_eta
I32, # int penalize_nl
]
self.library.minigpt4_end_chat_image.restype = I32
self.library.minigpt4_system_prompt.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
I32, # size_t n_threads
]
self.library.minigpt4_system_prompt.restype = I32
self.library.minigpt4_begin_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR, # const char *s
I32, # size_t n_threads
]
self.library.minigpt4_begin_chat.restype = I32
self.library.minigpt4_end_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
CHAR_PTR_PTR, # const char **token
I32, # size_t n_threads
F32, # float temp
I32, # int32_t top_k
F32, # float top_p
F32, # float tfs_z
F32, # float typical_p
I32, # int32_t repeat_last_n
F32, # float repeat_penalty
F32, # float alpha_presence
F32, # float alpha_frequency
I32, # int mirostat
F32, # float mirostat_tau
F32, # float mirostat_eta
I32, # int penalize_nl
]
self.library.minigpt4_end_chat.restype = I32
self.library.minigpt4_reset_chat.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
]
self.library.minigpt4_reset_chat.restype = I32
self.library.minigpt4_contains_eos_token.argtypes = [
CHAR_PTR, # const char *s
]
self.library.minigpt4_contains_eos_token.restype = I32
self.library.minigpt4_is_eos.argtypes = [
CHAR_PTR, # const char *s
]
self.library.minigpt4_is_eos.restype = I32
self.library.minigpt4_free.argtypes = [
MiniGPT4ContextP, # struct MiniGPT4Context *ctx
]
self.library.minigpt4_free.restype = I32
self.library.minigpt4_free_image.argtypes = [
MiniGPT4ImageP, # struct MiniGPT4Image *image
]
self.library.minigpt4_free_image.restype = I32
self.library.minigpt4_free_embedding.argtypes = [
MiniGPT4EmbeddingP, # struct MiniGPT4Embedding *embedding
]
self.library.minigpt4_free_embedding.restype = I32
self.library.minigpt4_error_code_to_string.argtypes = [
I32, # int error_code
]
self.library.minigpt4_error_code_to_string.restype = CHAR_PTR
self.library.minigpt4_quantize_model.argtypes = [
CHAR_PTR, # const char *in_path
CHAR_PTR, # const char *out_path
I32, # int data_type
]
self.library.minigpt4_quantize_model.restype = I32
self.library.minigpt4_set_verbosity.argtypes = [
I32, # int verbosity
]
self.library.minigpt4_set_verbosity.restype = None
def panic_if_error(self, error_code: int) -> None:
"""
Raises an exception if the error code is not 0.
Parameters
----------
error_code : int
Error code to check.
"""
if error_code != 0:
raise RuntimeError(self.library.minigpt4_error_code_to_string(I32(error_code)))
def minigpt4_model_load(self, model_path: str, llm_model_path: str, verbosity: int = 1, seed: int = 1337, n_ctx: int = 2048, n_batch: int = 512, numa: int = 0) -> MiniGPT4Context:
"""
Loads a model from a file.
Args:
model_path (str): Path to model file.
llm_model_path (str): Path to LLM model file.
verbosity (int): Verbosity level: 0 = silent, 1 = error, 2 = info, 3 = debug. Defaults to 0.
n_ctx (int): Size of context for llm model. Defaults to 2048.
seed (int): Seed for llm model. Defaults to 1337.
numa (int): NUMA node to use (0 = NUMA disabled, 1 = NUMA enabled). Defaults to 0.
Returns:
MiniGPT4Context: Context.
"""
ptr = self.library.minigpt4_model_load(
model_path.encode('utf-8'),
llm_model_path.encode('utf-8'),
I32(verbosity),
I32(seed),
I32(n_ctx),
I32(n_batch),
I32(numa),
)
assert ptr is not None, 'minigpt4_model_load failed'
return MiniGPT4Context(ptr)
def minigpt4_image_load_from_file(self, ctx: MiniGPT4Context, path: str, flags: int) -> MiniGPT4Image:
"""
Loads an image from a file
Args:
ctx (MiniGPT4Context): context
path (str): path
flags (int): flags
Returns:
MiniGPT4Image: image
"""
image = MiniGPT4Image()
self.panic_if_error(self.library.minigpt4_image_load_from_file(ctx.ptr, path.encode('utf-8'), ctypes.pointer(image), I32(flags)))
return image
def minigpt4_preprocess_image(self, ctx: MiniGPT4Context, image: MiniGPT4Image, flags: int = 0) -> MiniGPT4Image:
"""
Preprocesses an image
Args:
ctx (MiniGPT4Context): Context
image (MiniGPT4Image): Image
flags (int): Flags. Defaults to 0.
Returns:
MiniGPT4Image: Preprocessed image
"""
preprocessed_image = MiniGPT4Image()
self.panic_if_error(self.library.minigpt4_preprocess_image(ctx.ptr, ctypes.pointer(image), ctypes.pointer(preprocessed_image), I32(flags)))
return preprocessed_image
def minigpt4_encode_image(self, ctx: MiniGPT4Context, image: MiniGPT4Image, n_threads: int = 0) -> MiniGPT4Embedding:
"""
Encodes an image into embedding
Args:
ctx (MiniGPT4Context): Context.
image (MiniGPT4Image): Image.
n_threads (int): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
embedding (MiniGPT4Embedding): Output embedding.
"""
embedding = MiniGPT4Embedding()
self.panic_if_error(self.library.minigpt4_encode_image(ctx.ptr, ctypes.pointer(image), ctypes.pointer(embedding), n_threads))
return embedding
def minigpt4_begin_chat_image(self, ctx: MiniGPT4Context, image_embedding: MiniGPT4Embedding, s: str, n_threads: int = 0):
"""
Begins a chat with an image.
Args:
ctx (MiniGPT4Context): Context.
image_embedding (MiniGPT4Embedding): Image embedding.
s (str): Question to ask about the image.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
None
"""
self.panic_if_error(self.library.minigpt4_begin_chat_image(ctx.ptr, ctypes.pointer(image_embedding), s.encode('utf-8'), n_threads))
def minigpt4_end_chat_image(self, ctx: MiniGPT4Context, n_threads: int = 0, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1) -> str:
"""
Ends a chat with an image.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): Tfs Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penality. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat Tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat Eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
Returns:
str: Token generated.
"""
token = CHAR_PTR()
self.panic_if_error(self.library.minigpt4_end_chat_image(ctx.ptr, ctypes.pointer(token), n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl))
return ctypes.cast(token, ctypes.c_char_p).value.decode('utf-8')
def minigpt4_system_prompt(self, ctx: MiniGPT4Context, n_threads: int = 0):
"""
Generates a system prompt.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
"""
self.panic_if_error(self.library.minigpt4_system_prompt(ctx.ptr, n_threads))
def minigpt4_begin_chat(self, ctx: MiniGPT4Context, s: str, n_threads: int = 0):
"""
Begins a chat continuing after minigpt4_begin_chat_image
Args:
ctx (MiniGPT4Context): Context.
s (str): Question to ask about the image.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
Returns:
None
"""
self.panic_if_error(self.library.minigpt4_begin_chat(ctx.ptr, s.encode('utf-8'), n_threads))
def minigpt4_end_chat(self, ctx: MiniGPT4Context, n_threads: int = 0, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1) -> str:
"""
Ends a chat.
Args:
ctx (MiniGPT4Context): Context.
n_threads (int, optional): Number of threads to use, if 0, uses all available. Defaults to 0.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): Tfs Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penality. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat Tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat Eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
Returns:
str: Token generated.
"""
token = CHAR_PTR()
self.panic_if_error(self.library.minigpt4_end_chat(ctx.ptr, ctypes.pointer(token), n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl))
return ctypes.cast(token, ctypes.c_char_p).value.decode('utf-8')
def minigpt4_reset_chat(self, ctx: MiniGPT4Context):
"""
Resets the chat.
Args:
ctx (MiniGPT4Context): Context.
"""
self.panic_if_error(self.library.minigpt4_reset_chat(ctx.ptr))
def minigpt4_contains_eos_token(self, s: str) -> bool:
"""
Checks if a string contains an EOS token.
Args:
s (str): String to check.
Returns:
bool: True if the string contains an EOS token, False otherwise.
"""
return self.library.minigpt4_contains_eos_token(s.encode('utf-8'))
def minigpt4_is_eos(self, s: str) -> bool:
"""
Checks if a string is EOS.
Args:
s (str): String to check.
Returns:
bool: True if the string contains an EOS, False otherwise.
"""
return self.library.minigpt4_is_eos(s.encode('utf-8'))
def minigpt4_free(self, ctx: MiniGPT4Context) -> None:
"""
Frees a context.
Args:
ctx (MiniGPT4Context): Context.
"""
self.panic_if_error(self.library.minigpt4_free(ctx.ptr))
def minigpt4_free_image(self, image: MiniGPT4Image) -> None:
"""
Frees an image.
Args:
image (MiniGPT4Image): Image.
"""
self.panic_if_error(self.library.minigpt4_free_image(ctypes.pointer(image)))
def minigpt4_free_embedding(self, embedding: MiniGPT4Embedding) -> None:
"""
Frees an embedding.
Args:
embedding (MiniGPT4Embedding): Embedding.
"""
self.panic_if_error(self.library.minigpt4_free_embedding(ctypes.pointer(embedding)))
def minigpt4_error_code_to_string(self, error_code: int) -> str:
"""
Converts an error code to a string.
Args:
error_code (int): Error code.
Returns:
str: Error string.
"""
return self.library.minigpt4_error_code_to_string(error_code).decode('utf-8')
def minigpt4_quantize_model(self, in_path: str, out_path: str, data_type: DataType):
"""
Quantizes a model file.
Args:
in_path (str): Path to input model file.
out_path (str): Path to write output model file.
data_type (DataType): Must be one DataType enum values.
"""
self.panic_if_error(self.library.minigpt4_quantize_model(in_path.encode('utf-8'), out_path.encode('utf-8'), data_type))
def minigpt4_set_verbosity(self, verbosity: Verbosity):
"""
Sets verbosity.
Args:
verbosity (int): Verbosity.
"""
self.library.minigpt4_set_verbosity(I32(verbosity))
def load_library() -> MiniGPT4SharedLibrary:
"""
Attempts to find minigpt4.cpp shared library and load it.
"""
file_name: str
if 'win32' in sys.platform or 'cygwin' in sys.platform:
file_name = 'minigpt4.dll'
elif 'darwin' in sys.platform:
file_name = 'libminigpt4.dylib'
else:
file_name = 'libminigpt4.so'
cwd = pathlib.Path(os.getcwd())
repo_root_dir: pathlib.Path = pathlib.Path(os.path.abspath(__file__)).parent.parent
paths = [
# If we are in "minigpt4" directory
f'../bin/Release/{file_name}',
# If we are in repo root directory
f'bin/Release/{file_name}',
# If we compiled in build directory
f'build/bin/Release/{file_name}',
# If we compiled in build directory
f'build/{file_name}',
f'../build/{file_name}',
# Search relative to this file
str(repo_root_dir / 'bin' / 'Release' / file_name),
# Fallback
str(repo_root_dir / file_name),
str(cwd / file_name)
]
for path in paths:
if os.path.isfile(path):
return MiniGPT4SharedLibrary(path)
return MiniGPT4SharedLibrary(paths[-1])
class MiniGPT4ChatBot:
def __init__(self, model_path: str, llm_model_path: str, verbosity: Verbosity = Verbosity.SILENT, n_threads: int = 0):
"""
Creates a new MiniGPT4ChatBot instance.
Args:
model_path (str): Path to model file.
llm_model_path (str): Path to language model model file.
verbosity (Verbosity, optional): Verbosity. Defaults to Verbosity.SILENT.
n_threads (int, optional): Number of threads to use. Defaults to 0.
"""
self.library = load_library()
self.ctx = self.library.minigpt4_model_load(model_path, llm_model_path, verbosity)
self.n_threads = n_threads
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
self.image_size = 224
mean = (0.48145466, 0.4578275, 0.40821073)
std = (0.26862954, 0.26130258, 0.27577711)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
self.image_size,
interpolation=InterpolationMode.BICUBIC,
),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]
)
self.embedding: Optional[MiniGPT4Embedding] = None
self.is_image_chat = False
self.chat_history = []
def free(self):
if self.ctx:
self.library.minigpt4_free(self.ctx)
def generate(self, message: str, limit: int = 1024, temp: float = 0.8, top_k: int = 40, top_p: float = 0.9, tfs_z: float = 1.0, typical_p: float = 1.0, repeat_last_n: int = 64, repeat_penalty: float = 1.1, alpha_presence: float = 1.0, alpha_frequency: float = 1.0, mirostat: int = 0, mirostat_tau: float = 5.0, mirostat_eta: float = 1.0, penalize_nl: int = 1):
"""
Generates a chat response.
Args:
message (str): Message.
limit (int, optional): Limit. Defaults to 1024.
temp (float, optional): Temperature. Defaults to 0.8.
top_k (int, optional): Top K. Defaults to 40.
top_p (float, optional): Top P. Defaults to 0.9.
tfs_z (float, optional): TFS Z. Defaults to 1.0.
typical_p (float, optional): Typical P. Defaults to 1.0.
repeat_last_n (int, optional): Repeat last N. Defaults to 64.
repeat_penalty (float, optional): Repeat penalty. Defaults to 1.1.
alpha_presence (float, optional): Alpha presence. Defaults to 1.0.
alpha_frequency (float, optional): Alpha frequency. Defaults to 1.0.
mirostat (int, optional): Mirostat. Defaults to 0.
mirostat_tau (float, optional): Mirostat tau. Defaults to 5.0.
mirostat_eta (float, optional): Mirostat eta. Defaults to 1.0.
penalize_nl (int, optional): Penalize NL. Defaults to 1.
"""
if self.is_image_chat:
self.is_image_chat = False
self.library.minigpt4_begin_chat_image(self.ctx, self.embedding, message, self.n_threads)
chat = ''
for _ in range(limit):
token = self.library.minigpt4_end_chat_image(self.ctx, self.n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl)
chat += token
if self.library.minigpt4_contains_eos_token(token):
continue
if self.library.minigpt4_is_eos(chat):
break
yield token
else:
self.library.minigpt4_begin_chat(self.ctx, message, self.n_threads)
chat = ''
for _ in range(limit):
token = self.library.minigpt4_end_chat(self.ctx, self.n_threads, temp, top_k, top_p, tfs_z, typical_p, repeat_last_n, repeat_penalty, alpha_presence, alpha_frequency, mirostat, mirostat_tau, mirostat_eta, penalize_nl)
chat += token
if self.library.minigpt4_contains_eos_token(token):
continue
if self.library.minigpt4_is_eos(chat):
break
yield token
def reset_chat(self):
"""
Resets the chat.
"""
self.is_image_chat = False
if self.embedding:
self.library.minigpt4_free_embedding(self.embedding)
self.embedding = None
self.library.minigpt4_reset_chat(self.ctx)
self.library.minigpt4_system_prompt(self.ctx, self.n_threads)
def upload_image(self, image):
"""
Uploads an image.
Args:
image (Image): Image.
"""
self.reset_chat()
image = self.transform(image)
image = image.unsqueeze(0)
image = image.numpy()
image = image.ctypes.data_as(ctypes.c_void_p)
minigpt4_image = MiniGPT4Image(image, self.image_size, self.image_size, 3, ImageFormat.F32)
self.embedding = self.library.minigpt4_encode_image(self.ctx, minigpt4_image, self.n_threads)
self.is_image_chat = True
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Test loading minigpt4')
parser.add_argument('model_path', help='Path to model file')
parser.add_argument('llm_model_path', help='Path to llm model file')
parser.add_argument('-i', '--image_path', help='Image to test', default='images/llama.png')
parser.add_argument('-p', '--prompts', help='Text to test', default='what is the text in the picture?,what is the color of it?')
args = parser.parse_args()
model_path = args.model_path
llm_model_path = args.llm_model_path
image_path = args.image_path
prompts = args.prompts
if not Path(model_path).exists():
print(f'Model does not exist: {model_path}')
exit(1)
if not Path(llm_model_path).exists():
print(f'LLM Model does not exist: {llm_model_path}')
exit(1)
prompts = prompts.split(',')
print('Loading minigpt4 shared library...')
library = load_library()
print(f'Loaded library {library}')
ctx = library.minigpt4_model_load(model_path, llm_model_path, Verbosity.DEBUG)
image = library.minigpt4_image_load_from_file(ctx, image_path, 0)
preprocessed_image = library.minigpt4_preprocess_image(ctx, image, 0)
question = prompts[0]
n_threads = 0
embedding = library.minigpt4_encode_image(ctx, preprocessed_image, n_threads)
library.minigpt4_system_prompt(ctx, n_threads)
library.minigpt4_begin_chat_image(ctx, embedding, question, n_threads)
chat = ''
while True:
token = library.minigpt4_end_chat_image(ctx, n_threads)
chat += token
if library.minigpt4_contains_eos_token(token):
continue
if library.minigpt4_is_eos(chat):
break
print(token, end='')
for i in range(1, len(prompts)):
prompt = prompts[i]
library.minigpt4_begin_chat(ctx, prompt, n_threads)
chat = ''
while True:
token = library.minigpt4_end_chat(ctx, n_threads)
chat += token
if library.minigpt4_contains_eos_token(token):
continue
if library.minigpt4_is_eos(chat):
break
print(token, end='')
library.minigpt4_free_image(image)
library.minigpt4_free_image(preprocessed_image)
library.minigpt4_free(ctx)
|