|
import argparse |
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from pathlib import Path |
|
|
|
import comet_ml |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[3] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
from train import train |
|
from utils.callbacks import Callbacks |
|
from utils.general import increment_path |
|
from utils.torch_utils import select_device |
|
|
|
|
|
config = comet_ml.config.get_config() |
|
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5") |
|
|
|
|
|
def get_args(known=False): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path") |
|
parser.add_argument("--cfg", type=str, default="", help="model.yaml path") |
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") |
|
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") |
|
parser.add_argument("--epochs", type=int, default=300, help="total training epochs") |
|
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") |
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") |
|
parser.add_argument("--rect", action="store_true", help="rectangular training") |
|
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") |
|
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") |
|
parser.add_argument("--noval", action="store_true", help="only validate final epoch") |
|
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") |
|
parser.add_argument("--noplots", action="store_true", help="save no plot files") |
|
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") |
|
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") |
|
parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"') |
|
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") |
|
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") |
|
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") |
|
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") |
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") |
|
parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name") |
|
parser.add_argument("--name", default="exp", help="save to project/name") |
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") |
|
parser.add_argument("--quad", action="store_true", help="quad dataloader") |
|
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") |
|
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") |
|
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") |
|
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") |
|
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") |
|
parser.add_argument("--seed", type=int, default=0, help="Global training seed") |
|
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") |
|
|
|
|
|
parser.add_argument("--entity", default=None, help="W&B: Entity") |
|
parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option') |
|
parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval") |
|
parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use") |
|
|
|
|
|
parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.") |
|
parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.") |
|
parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.") |
|
parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.") |
|
parser.add_argument( |
|
"--comet_optimizer_workers", |
|
type=int, |
|
default=1, |
|
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.", |
|
) |
|
|
|
return parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
|
|
|
def run(parameters, opt): |
|
hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]} |
|
|
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) |
|
opt.batch_size = parameters.get("batch_size") |
|
opt.epochs = parameters.get("epochs") |
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
train(hyp_dict, opt, device, callbacks=Callbacks()) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = get_args(known=True) |
|
|
|
opt.weights = str(opt.weights) |
|
opt.cfg = str(opt.cfg) |
|
opt.data = str(opt.data) |
|
opt.project = str(opt.project) |
|
|
|
optimizer_id = os.getenv("COMET_OPTIMIZER_ID") |
|
if optimizer_id is None: |
|
with open(opt.comet_optimizer_config) as f: |
|
optimizer_config = json.load(f) |
|
optimizer = comet_ml.Optimizer(optimizer_config) |
|
else: |
|
optimizer = comet_ml.Optimizer(optimizer_id) |
|
|
|
opt.comet_optimizer_id = optimizer.id |
|
status = optimizer.status() |
|
|
|
opt.comet_optimizer_objective = status["spec"]["objective"] |
|
opt.comet_optimizer_metric = status["spec"]["metric"] |
|
|
|
logger.info("COMET INFO: Starting Hyperparameter Sweep") |
|
for parameter in optimizer.get_parameters(): |
|
run(parameter["parameters"], opt) |
|
|