File size: 6,620 Bytes
92894b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import json
import logging
import os
import sys
from pathlib import Path

import comet_ml

logger = logging.getLogger(__name__)

FILE = Path(__file__).resolve()
ROOT = FILE.parents[3]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH

from train import train
from utils.callbacks import Callbacks
from utils.general import increment_path
from utils.torch_utils import select_device

# Project Configuration
config = comet_ml.config.get_config()
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")


def get_args(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="initial weights path")
    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
    parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")
    parser.add_argument("--epochs", type=int, default=300, help="total training epochs")
    parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")
    parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")
    parser.add_argument("--rect", action="store_true", help="rectangular training")
    parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")
    parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")
    parser.add_argument("--noval", action="store_true", help="only validate final epoch")
    parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")
    parser.add_argument("--noplots", action="store_true", help="save no plot files")
    parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")
    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
    parser.add_argument("--cache", type=str, nargs="?", const="ram", help='--cache images in "ram" (default) or "disk"')
    parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%")
    parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class")
    parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer")
    parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode")
    parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)")
    parser.add_argument("--project", default=ROOT / "runs/train", help="save to project/name")
    parser.add_argument("--name", default="exp", help="save to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--quad", action="store_true", help="quad dataloader")
    parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler")
    parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon")
    parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)")
    parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2")
    parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)")
    parser.add_argument("--seed", type=int, default=0, help="Global training seed")
    parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify")

    # Weights & Biases arguments
    parser.add_argument("--entity", default=None, help="W&B: Entity")
    parser.add_argument("--upload_dataset", nargs="?", const=True, default=False, help='W&B: Upload data, "val" option')
    parser.add_argument("--bbox_interval", type=int, default=-1, help="W&B: Set bounding-box image logging interval")
    parser.add_argument("--artifact_alias", type=str, default="latest", help="W&B: Version of dataset artifact to use")

    # Comet Arguments
    parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
    parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
    parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
    parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
    parser.add_argument(
        "--comet_optimizer_workers",
        type=int,
        default=1,
        help="Comet: Number of Parallel Workers to use with the Comet Optimizer.",
    )

    return parser.parse_known_args()[0] if known else parser.parse_args()


def run(parameters, opt):
    hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}

    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
    opt.batch_size = parameters.get("batch_size")
    opt.epochs = parameters.get("epochs")

    device = select_device(opt.device, batch_size=opt.batch_size)
    train(hyp_dict, opt, device, callbacks=Callbacks())


if __name__ == "__main__":
    opt = get_args(known=True)

    opt.weights = str(opt.weights)
    opt.cfg = str(opt.cfg)
    opt.data = str(opt.data)
    opt.project = str(opt.project)

    optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
    if optimizer_id is None:
        with open(opt.comet_optimizer_config) as f:
            optimizer_config = json.load(f)
        optimizer = comet_ml.Optimizer(optimizer_config)
    else:
        optimizer = comet_ml.Optimizer(optimizer_id)

    opt.comet_optimizer_id = optimizer.id
    status = optimizer.status()

    opt.comet_optimizer_objective = status["spec"]["objective"]
    opt.comet_optimizer_metric = status["spec"]["metric"]

    logger.info("COMET INFO: Starting Hyperparameter Sweep")
    for parameter in optimizer.get_parameters():
        run(parameter["parameters"], opt)