|
import numpy as np |
|
import gradio as gr |
|
import torch |
|
from transformers import Dinov2Config, Dinov2Model, Dinov2ForImageClassification, AutoImageProcessor |
|
import torch.nn as nn |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
|
|
model_name = "dinov2-large-2024_01_24-with_data_aug_batch-size32_epochs93_freeze" |
|
checkpoint_name = "lombardata/" + model_name |
|
|
|
|
|
def create_head(num_features , number_classes ,dropout_prob=0.5 ,activation_func =nn.ReLU): |
|
features_lst = [num_features , num_features//2 , num_features//4] |
|
layers = [] |
|
for in_f ,out_f in zip(features_lst[:-1] , features_lst[1:]): |
|
layers.append(nn.Linear(in_f , out_f)) |
|
layers.append(activation_func()) |
|
layers.append(nn.BatchNorm1d(out_f)) |
|
if dropout_prob !=0 : layers.append(nn.Dropout(dropout_prob)) |
|
layers.append(nn.Linear(features_lst[-1] , number_classes)) |
|
return nn.Sequential(*layers) |
|
from transformers import Dinov2Config, Dinov2Model |
|
|
|
class NewheadDinov2ForImageClassification(Dinov2ForImageClassification): |
|
def __init__(self, config: Dinov2Config) -> None: |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.dinov2 = Dinov2Model(config) |
|
|
|
|
|
self.classifier = create_head(config.hidden_size * 2, config.num_labels) |
|
|
|
model = NewheadDinov2ForImageClassification.from_pretrained(checkpoint_name) |
|
|
|
|
|
hf_hub_download(repo_id=checkpoint_name, filename="config.json") |
|
id2label = config["id2label"] |
|
label2id = config["label2id"] |
|
image_size = config["image_size"] |
|
classes_names = list(label2id.keys()) |
|
''' |
|
# import labels |
|
classes_names = ["Acropore_branched", "Acropore_digitised", "Acropore_tabular", "Algae_assembly", |
|
"Algae_limestone", "Algae_sodding", "Dead_coral", "Fish", "Human_object", |
|
"Living_coral", "Millepore", "No_acropore_encrusting", "No_acropore_massive", |
|
"No_acropore_sub_massive", "Rock", "Sand", |
|
"Scrap", "Sea_cucumber", "Syringodium_isoetifolium", |
|
"Thalassodendron_ciliatum", "Useless"] |
|
|
|
classes_nb = list(np.arange(len(classes_names))) |
|
id2label = {int(classes_nb[i]): classes_names[i] for i in range(len(classes_nb))} |
|
label2id = {v: k for k, v in id2label.items()} |
|
''' |
|
|
|
def sigmoid(_outputs): |
|
return 1.0 / (1.0 + np.exp(-_outputs)) |
|
|
|
def predict(input_image): |
|
image_processor = AutoImageProcessor.from_pretrained(checkpoint_name) |
|
|
|
inputs = image_processor(input_image, return_tensors="pt") |
|
inputs = inputs |
|
with torch.no_grad(): |
|
model_outputs = model(**inputs) |
|
outputs = model_outputs["logits"][0] |
|
scores = sigmoid(outputs) |
|
result = {} |
|
i = 0 |
|
for score in scores: |
|
label = id2label[i] |
|
result[label] = float(score) |
|
i += 1 |
|
result = {key: result[key] for key in result if result[key] > 0.5} |
|
return result |
|
|
|
|
|
title = "DinoVd'eau image classification" |
|
description = f"This is a prototype application that demonstrates how artificial intelligence-based systems can recognize what object(s) is present in an underwater image. To use it, simply upload your image, or click one of the example images to load them. For predictions, we use the open-source model {checkpoint_name}" |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(shape=(224, 224)), |
|
outputs="label", |
|
title=title, |
|
description=description, |
|
examples=["GOPR0106.JPG", |
|
"session_2021_08_30_Mayotte_10_image_00066.jpg", |
|
"session_2018_11_17_kite_Le_Morne_Manawa_G0065777.JPG", |
|
"session_2023_06_28_caplahoussaye_plancha_body_v1B_00_GP1_3_1327.jpeg"]).launch() |
|
|