File size: 3,717 Bytes
863aaff 9e66188 7092e6d d73ed72 863aaff 28f1ee4 c7179a0 28f1ee4 fae65ac 28f1ee4 863aaff fae65ac 4f4630f fae65ac 4f4630f 863aaff 95ddf62 7989a0a 95ddf62 eb85cd6 fc6fbc6 95ddf62 863aaff eb85cd6 1acb5c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import numpy as np
import gradio as gr
import torch
from transformers import Dinov2Config, Dinov2Model, Dinov2ForImageClassification, AutoImageProcessor
import torch.nn as nn
import os
from huggingface_hub import hf_hub_download
model_name = "dinov2-large-2024_01_24-with_data_aug_batch-size32_epochs93_freeze"
checkpoint_name = "lombardata/" + model_name
# CREATE CUSTOM MODEL
def create_head(num_features , number_classes ,dropout_prob=0.5 ,activation_func =nn.ReLU):
features_lst = [num_features , num_features//2 , num_features//4]
layers = []
for in_f ,out_f in zip(features_lst[:-1] , features_lst[1:]):
layers.append(nn.Linear(in_f , out_f))
layers.append(activation_func())
layers.append(nn.BatchNorm1d(out_f))
if dropout_prob !=0 : layers.append(nn.Dropout(dropout_prob))
layers.append(nn.Linear(features_lst[-1] , number_classes))
return nn.Sequential(*layers)
from transformers import Dinov2Config, Dinov2Model
class NewheadDinov2ForImageClassification(Dinov2ForImageClassification):
def __init__(self, config: Dinov2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.dinov2 = Dinov2Model(config)
# Classifier head
self.classifier = create_head(config.hidden_size * 2, config.num_labels)
model = NewheadDinov2ForImageClassification.from_pretrained(checkpoint_name)
# IMPORT MODEL CONFIG PARAMETERS
hf_hub_download(repo_id=checkpoint_name, filename="config.json")
id2label = config["id2label"]
label2id = config["label2id"]
image_size = config["image_size"]
classes_names = list(label2id.keys())
'''
# import labels
classes_names = ["Acropore_branched", "Acropore_digitised", "Acropore_tabular", "Algae_assembly",
"Algae_limestone", "Algae_sodding", "Dead_coral", "Fish", "Human_object",
"Living_coral", "Millepore", "No_acropore_encrusting", "No_acropore_massive",
"No_acropore_sub_massive", "Rock", "Sand",
"Scrap", "Sea_cucumber", "Syringodium_isoetifolium",
"Thalassodendron_ciliatum", "Useless"]
classes_nb = list(np.arange(len(classes_names)))
id2label = {int(classes_nb[i]): classes_names[i] for i in range(len(classes_nb))}
label2id = {v: k for k, v in id2label.items()}
'''
def sigmoid(_outputs):
return 1.0 / (1.0 + np.exp(-_outputs))
def predict(input_image):
image_processor = AutoImageProcessor.from_pretrained(checkpoint_name)
# predict
inputs = image_processor(input_image, return_tensors="pt")
inputs = inputs
with torch.no_grad():
model_outputs = model(**inputs)
outputs = model_outputs["logits"][0]
scores = sigmoid(outputs)
result = {}
i = 0
for score in scores:
label = id2label[i]
result[label] = float(score)
i += 1
result = {key: result[key] for key in result if result[key] > 0.5}
return result
# Define style
title = "DinoVd'eau image classification"
description = f"This is a prototype application that demonstrates how artificial intelligence-based systems can recognize what object(s) is present in an underwater image. To use it, simply upload your image, or click one of the example images to load them. For predictions, we use the open-source model {checkpoint_name}"
gr.Interface(
fn=predict,
inputs=gr.Image(shape=(224, 224)),
outputs="label",
title=title,
description=description,
examples=["GOPR0106.JPG",
"session_2021_08_30_Mayotte_10_image_00066.jpg",
"session_2018_11_17_kite_Le_Morne_Manawa_G0065777.JPG",
"session_2023_06_28_caplahoussaye_plancha_body_v1B_00_GP1_3_1327.jpeg"]).launch()
|