Spaces:
Runtime error
Runtime error
File size: 9,217 Bytes
a9c13c7 30d0d6a a9c13c7 355529f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from datetime import datetime, timedelta
import holidays
from sklearn.ensemble import GradientBoostingRegressor
import xgboost as xgb
from sklearn.ensemble import AdaBoostRegressor
from catboost import CatBoostRegressor
from sklearn.ensemble import VotingRegressor
from sklearn.model_selection import train_test_split
import random
st.set_page_config(
page_title="Inventory Management System",
page_icon="๐ฎ",
layout="wide",
initial_sidebar_state="expanded",
)
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 200px;
}
[data-testid="stSidebar"][aria-expanded="flase"] > div:first-child {
width: 50px;
margin-left: -100px;
}
</style>
""",
unsafe_allow_html=True,
)
var = 0
with open("ATIF_SHAIK.pdf", "rb") as pdf_file:
PDFbyte = pdf_file.read()
with st.sidebar:
err = 0
data = st.file_uploader("Upload Stores Data (please use the same data uder 'files' section)")
if data:
# st.write(data.type)
if data.type != 'text/csv':
err = 1
st.info('Please Upload a CSV File format Only...')
st.download_button(
label="Download My Model Report as PDF",
data=PDFbyte,
key="download_button",
on_click=None, # You can specify a function to be called when the button is clicked
args=None, # Arguments to pass to the on_click function if specified
file_name='inventory_management_report.pdf',
mime='application/pdf' # Use 'application/pdf' for PDF files
)
st.markdown("<h1 style='color: blue;'>INVENTORY MANAGEMENT SYSTEM</h1>", unsafe_allow_html=True)
with st.expander('Introduction'):
st.write('Welcome to Invento - Your Smart Inventory Management Solution! Our app leverages the power of artificial intelligence and data analytics to revolutionize inventory management for businesses of all sizes. Say goodbye to overstocked shelves and stockouts. With Invento, you can predict product demand, optimize stock levels, and boost profitability. Explore our intuitive interface, harness the magic of machine learning, and stay ahead of the competition. Get ready to experience inventory management reimagined!')
st.warning('Click on Forecast Button after every chnages you make...')
st.warning("If any error displayed on screen don't worry just follow steps and it'll vanish")
def create_holiday_flags(date_series, country='TH'):
holiday_dict = holidays.CountryHoliday(country)
# Create a list to store binary holiday flags
holiday_flags = []
# Iterate through the date_series
for date in date_series:
date_obj = datetime.strptime(date, '%m/%d/%Y')
if date_obj in holiday_dict:
holiday_flags.append(1)
else:
holiday_flags.append(0)
return holiday_flags
def gender_encode(text):
if text == 'Male':
return 1;
else:
return 0
@st.cache_data
def train(dat):
store = pd.read_csv(dat)
store = store.sort_values(by='Date')
encoded_payment_mode = pd.get_dummies(store['Payment'], prefix='payment')
store = store.drop('Payment', axis=1)
store = pd.concat([store, encoded_payment_mode], axis=1)
store['Gender'] = store['Gender'].apply(gender_encode)
store['is_holiday'] = create_holiday_flags(store['Date'])
store['Date'] = pd.to_datetime(store['Date'])
store['year'] = store['Date'].dt.year
store['day'] = store['Date'].dt.day
store['month'] = store['Date'].dt.month
try:
store = store.drop(['Invoice ID', 'Branch', 'City', 'Customer type', 'Tax 5%', 'gross margin percentage', 'gross income', 'Rating'], axis=1)
except Exception:
pass
store = store.drop(['Date'], axis=1)
try:
store = store.drop(['Total', 'Time'], axis=1)
except Exception:
pass
import category_encoders as ce
tenc=ce.TargetEncoder()
df_city=tenc.fit_transform(store['Product line'],store['Quantity'])
d = {}
for i,j in zip(list(store['Product line']), list(df_city['Product line'])):
if i not in d:
d[i] = j
store['Product line'] = df_city
store = store.reset_index()
try:
store = store.drop(['index'], axis=1)
except Exception:
pass
model4 = CatBoostRegressor()
model1 = GradientBoostingRegressor()
model2 = xgb.XGBRegressor()
model3 = AdaBoostRegressor()
y = store['Quantity']
y = y.values
X = store.drop(['Quantity'], axis=1)
X = X.drop(['payment_Cash'],axis=1)
# st.dataframe(X)
X = X.values
ensemble_EC1 = VotingRegressor(estimators=[('gb', model1), ('xgb', model2), ('ada', model3), ('cat', model4)])
ensemble_EC1.fit(X, y)
return d, ensemble_EC1
with st.spinner("Model is getting trained..."):
if data:
di, model = train(data)
if data and err==0:
st.toast('Just one click and manage your Goods stock', icon='๐')
forecast = st.button('Forecast Inventory')
def func(daa):
store2 = pd.read_csv(daa)
store2['Date'] = pd.to_datetime(store2['Date'])
store2['year'] = store2['Date'].dt.year
store2['day'] = store2['Date'].dt.day
store2['month'] = store2['Date'].dt.month
yy = store2.iloc[store2.shape[1]-1].year
dd = store2.iloc[store2.shape[1]-1].day
mm = store2.iloc[store2.shape[1]-1].month
return yy, dd, mm
try:
yy, dd, mm = func(data)
except Exception as e:
pass
col1, col2 = st.columns(2)
col3, col4 = st.columns(2)
col5, col6 = st.columns(2)
with col1:
gender = st.radio("Select Gender for Forecasting", ('Male', 'Female'))
with col2:
payment_method = st.radio("Select Payment Method for Forecasting", ('Cash', 'Credit Card', 'E-Wallet'))
with col3:
uni_price = st.number_input("Insert Min Price of Individual Unit Price")
with col4:
uni_max = st.number_input("Insert Max Price of Individual Unit Price")
with col5:
cog_price = st.number_input("Insert Min Price of COGS")
with col6:
cog_max = st.number_input("Insert Max Price of COGS")
try:
prods = st.selectbox('Choose a Product for Forecast', di.keys())
except Exception as e:
pass
start_date = st.slider(
"When to start?",
value=datetime(yy, mm, dd),
format="DD/MM/YY")
# input_date = datetime(yy, mm, dd)
st.write("Forecast from : ", start_date.date())
# result_date = input_date + timedelta(days=60)
end_date = st.slider("How many days to forecast?",1, 60)
st.write('Days to Forecast : ', end_date)
range_date = start_date+timedelta(days=end_date-1)
col7, col8, col9 = st.columns(3)
with col8:
st.write(f'{start_date.date()} : {range_date.date()}')
gender = [] #d
uni_pr = [] #d
cogs = [] #d
cred = [] #d
e_wallet = [] #d
date_list = [] #d
prod = [] #d
is_hol = [] #d
current_date = start_date.date()
while current_date <= range_date.date():
date_list.append(current_date)
current_date += timedelta(days=1)
# st.dataframe(pd.DataFrame(date_list))
years = [i.year for i in date_list]
months = [i.month for i in date_list]
days = [i.day for i in date_list]
for i in range(len(date_list)):
if gender == "Male":
gender.append(1)
else:
gender.append(0)
for i in range(len(date_list)):
random_value = random.uniform(uni_price, uni_max)
uni_pr.append(random_value)
for i in range(len(date_list)):
random_vaue = random.uniform(cog_price, cog_max)
cogs.append(random_vaue)
if payment_method == "Cash":
cred = [0 for i in range(len(date_list))]
e_wallet = [0 for i in range(len(date_list))]
elif payment_method == "Credit Card":
cred = [1 for i in range(len(date_list))]
e_wallet = [0 for i in range(len(date_list))]
elif payment_method == "E-Wallet":
cred = [0 for i in range(len(date_list))]
e_wallet = [1 for i in range(len(date_list))]
for i in range(len(date_list)):
prod.append(di[prods])
date_strings = [date.strftime('%m/%d/%Y') for date in date_list]
is_hol = create_holiday_flags(date_strings)
forecast_data = pd.DataFrame({"Gender":gender, "Product line":prod, "Unit price":uni_pr, "cogs":cogs, "payment_Credit card":cred, "payment_Ewallet":e_wallet,
"is_holiday":is_hol, "year":years, "day":days, "month":months})
# st.dataframe(forecast_data)
forecast_data = forecast_data.values
# y_pred = int(np.round(model.predict(forecast_data)))
y_pred = [int(np.round(pred)) for pred in model.predict(forecast_data)]
line = px.line(x=date_list, y=y_pred, title="Quantity Sale forecast")
box = px.box(y=y_pred, title='To Identify Bursts or Lower Quantity Sale')
hist = px.histogram(x=y_pred, title = 'Sales Display in Area')
col11, col22 = st.columns(2)
col33, col44 = st.columns(2)
with col11:
st.plotly_chart(line, use_container_width=True)
with col22:
st.plotly_chart(box, use_container_width=True)
with col33:
st.write(f"AVG SALE FORECAST : {np.average(np.array(y_pred)).round(2)} QUANTITIES")
with col44:
st.plotly_chart(hist, use_container_width=True) |