liberatoratif commited on
Commit
a9c13c7
1 Parent(s): 62954f5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +318 -0
app.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import plotly.express as px
5
+ from datetime import datetime, timedelta
6
+ import holidays
7
+ from sklearn.ensemble import GradientBoostingRegressor
8
+ import xgboost as xgb
9
+ from sklearn.ensemble import AdaBoostRegressor
10
+ from catboost import CatBoostRegressor
11
+ from sklearn.ensemble import VotingRegressor
12
+ from sklearn.model_selection import train_test_split
13
+ import random
14
+
15
+
16
+ st.set_page_config(
17
+ page_title="Inventory Management System",
18
+ page_icon="💮",
19
+ layout="wide",
20
+ initial_sidebar_state="expanded",
21
+ )
22
+
23
+ st.markdown(
24
+ """
25
+ <style>
26
+ [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
27
+ width: 200px;
28
+ }
29
+ [data-testid="stSidebar"][aria-expanded="flase"] > div:first-child {
30
+ width: 50px;
31
+ margin-left: -100px;
32
+ }
33
+ </style>
34
+ """,
35
+ unsafe_allow_html=True,
36
+ )
37
+ var = 0
38
+ with open("ATIF_SHAIK.pdf", "rb") as pdf_file:
39
+ PDFbyte = pdf_file.read()
40
+
41
+ with st.sidebar:
42
+ err = 0
43
+ data = st.file_uploader('Upload Stores Data')
44
+ if data:
45
+ # st.write(data.type)
46
+ if data.type != 'text/csv':
47
+ err = 1
48
+ st.info('Please Upload a CSV File format Only...')
49
+
50
+ st.download_button(
51
+ label="Download My Model Report as PDF",
52
+ data=PDFbyte,
53
+ key="download_button",
54
+ on_click=None, # You can specify a function to be called when the button is clicked
55
+ args=None, # Arguments to pass to the on_click function if specified
56
+ file_name='inventory_management_report.pdf',
57
+ mime='application/pdf' # Use 'application/pdf' for PDF files
58
+ )
59
+
60
+ st.markdown("<h1 style='color: blue;'>INVENTORY MANAGEMENT SYSTEM</h1>", unsafe_allow_html=True)
61
+ with st.expander('Introduction'):
62
+ st.write('Welcome to Invento - Your Smart Inventory Management Solution! Our app leverages the power of artificial intelligence and data analytics to revolutionize inventory management for businesses of all sizes. Say goodbye to overstocked shelves and stockouts. With Invento, you can predict product demand, optimize stock levels, and boost profitability. Explore our intuitive interface, harness the magic of machine learning, and stay ahead of the competition. Get ready to experience inventory management reimagined!')
63
+
64
+
65
+ st.warning('Click on Forecast Button after every chnages you make...')
66
+ st.warning("If any error displayed on screen don't worry just follow steps and it'll vanish")
67
+
68
+ def create_holiday_flags(date_series, country='TH'):
69
+ holiday_dict = holidays.CountryHoliday(country)
70
+
71
+ # Create a list to store binary holiday flags
72
+ holiday_flags = []
73
+
74
+ # Iterate through the date_series
75
+ for date in date_series:
76
+ date_obj = datetime.strptime(date, '%m/%d/%Y')
77
+ if date_obj in holiday_dict:
78
+ holiday_flags.append(1)
79
+ else:
80
+ holiday_flags.append(0)
81
+
82
+ return holiday_flags
83
+
84
+
85
+ def gender_encode(text):
86
+ if text == 'Male':
87
+ return 1;
88
+ else:
89
+ return 0
90
+
91
+
92
+ @st.cache_data
93
+ def train(dat):
94
+ store = pd.read_csv(dat)
95
+ store = store.sort_values(by='Date')
96
+ encoded_payment_mode = pd.get_dummies(store['Payment'], prefix='payment')
97
+ store = store.drop('Payment', axis=1)
98
+ store = pd.concat([store, encoded_payment_mode], axis=1)
99
+
100
+
101
+ store['Gender'] = store['Gender'].apply(gender_encode)
102
+
103
+ store['is_holiday'] = create_holiday_flags(store['Date'])
104
+
105
+ store['Date'] = pd.to_datetime(store['Date'])
106
+
107
+ store['year'] = store['Date'].dt.year
108
+ store['day'] = store['Date'].dt.day
109
+ store['month'] = store['Date'].dt.month
110
+
111
+ try:
112
+ store = store.drop(['Invoice ID', 'Branch', 'City', 'Customer type', 'Tax 5%', 'gross margin percentage', 'gross income', 'Rating'], axis=1)
113
+ except Exception:
114
+ pass
115
+
116
+ store = store.drop(['Date'], axis=1)
117
+
118
+ try:
119
+ store = store.drop(['Total', 'Time'], axis=1)
120
+ except Exception:
121
+ pass
122
+
123
+ import category_encoders as ce
124
+ tenc=ce.TargetEncoder()
125
+ df_city=tenc.fit_transform(store['Product line'],store['Quantity'])
126
+
127
+ d = {}
128
+ for i,j in zip(list(store['Product line']), list(df_city['Product line'])):
129
+ if i not in d:
130
+ d[i] = j
131
+
132
+ store['Product line'] = df_city
133
+
134
+ store = store.reset_index()
135
+
136
+ try:
137
+ store = store.drop(['index'], axis=1)
138
+ except Exception:
139
+ pass
140
+
141
+ model4 = CatBoostRegressor()
142
+ model1 = GradientBoostingRegressor()
143
+ model2 = xgb.XGBRegressor()
144
+ model3 = AdaBoostRegressor()
145
+
146
+ y = store['Quantity']
147
+ y = y.values
148
+ X = store.drop(['Quantity'], axis=1)
149
+ X = X.drop(['payment_Cash'],axis=1)
150
+ # st.dataframe(X)
151
+ X = X.values
152
+
153
+ ensemble_EC1 = VotingRegressor(estimators=[('gb', model1), ('xgb', model2), ('ada', model3), ('cat', model4)])
154
+ ensemble_EC1.fit(X, y)
155
+
156
+ return d, ensemble_EC1
157
+
158
+
159
+ with st.spinner("Model is getting trained..."):
160
+ if data:
161
+ di, model = train(data)
162
+
163
+ if data and err==0:
164
+ st.toast('Just one click and manage your Goods stock', icon='😍')
165
+ forecast = st.button('Forecast Inventory')
166
+
167
+
168
+ def func(daa):
169
+ store2 = pd.read_csv(daa)
170
+ store2['Date'] = pd.to_datetime(store2['Date'])
171
+ store2['year'] = store2['Date'].dt.year
172
+ store2['day'] = store2['Date'].dt.day
173
+ store2['month'] = store2['Date'].dt.month
174
+
175
+
176
+ yy = store2.iloc[store2.shape[1]-1].year
177
+ dd = store2.iloc[store2.shape[1]-1].day
178
+ mm = store2.iloc[store2.shape[1]-1].month
179
+
180
+ return yy, dd, mm
181
+
182
+ try:
183
+ yy, dd, mm = func(data)
184
+ except Exception as e:
185
+ pass
186
+
187
+ col1, col2 = st.columns(2)
188
+ col3, col4 = st.columns(2)
189
+ col5, col6 = st.columns(2)
190
+
191
+ with col1:
192
+ gender = st.radio("Select Gender for Forecasting", ('Male', 'Female'))
193
+
194
+ with col2:
195
+ payment_method = st.radio("Select Payment Method for Forecasting", ('Cash', 'Credit Card', 'E-Wallet'))
196
+
197
+ with col3:
198
+ uni_price = st.number_input("Insert Min Price of Individual Unit Price")
199
+
200
+ with col4:
201
+ uni_max = st.number_input("Insert Max Price of Individual Unit Price")
202
+
203
+ with col5:
204
+ cog_price = st.number_input("Insert Min Price of COGS")
205
+
206
+ with col6:
207
+ cog_max = st.number_input("Insert Max Price of COGS")
208
+
209
+
210
+ try:
211
+ prods = st.selectbox('Choose a Product for Forecast', di.keys())
212
+ except Exception as e:
213
+ pass
214
+
215
+
216
+ start_date = st.slider(
217
+ "When to start?",
218
+ value=datetime(yy, mm, dd),
219
+ format="DD/MM/YY")
220
+
221
+ # input_date = datetime(yy, mm, dd)
222
+ st.write("Forecast from : ", start_date.date())
223
+
224
+ # result_date = input_date + timedelta(days=60)
225
+
226
+ end_date = st.slider("How many days to forecast?",1, 60)
227
+
228
+ st.write('Days to Forecast : ', end_date)
229
+
230
+ range_date = start_date+timedelta(days=end_date-1)
231
+
232
+ col7, col8, col9 = st.columns(3)
233
+ with col8:
234
+ st.write(f'{start_date.date()} : {range_date.date()}')
235
+
236
+ gender = [] #d
237
+ uni_pr = [] #d
238
+ cogs = [] #d
239
+ cred = [] #d
240
+ e_wallet = [] #d
241
+ date_list = [] #d
242
+ prod = [] #d
243
+ is_hol = [] #d
244
+
245
+
246
+ current_date = start_date.date()
247
+ while current_date <= range_date.date():
248
+ date_list.append(current_date)
249
+ current_date += timedelta(days=1)
250
+
251
+ # st.dataframe(pd.DataFrame(date_list))
252
+
253
+ years = [i.year for i in date_list]
254
+ months = [i.month for i in date_list]
255
+ days = [i.day for i in date_list]
256
+
257
+ for i in range(len(date_list)):
258
+ if gender == "Male":
259
+ gender.append(1)
260
+ else:
261
+ gender.append(0)
262
+
263
+
264
+ for i in range(len(date_list)):
265
+ random_value = random.uniform(uni_price, uni_max)
266
+ uni_pr.append(random_value)
267
+
268
+
269
+ for i in range(len(date_list)):
270
+ random_vaue = random.uniform(cog_price, cog_max)
271
+ cogs.append(random_vaue)
272
+
273
+ if payment_method == "Cash":
274
+ cred = [0 for i in range(len(date_list))]
275
+ e_wallet = [0 for i in range(len(date_list))]
276
+
277
+ elif payment_method == "Credit Card":
278
+ cred = [1 for i in range(len(date_list))]
279
+ e_wallet = [0 for i in range(len(date_list))]
280
+
281
+ elif payment_method == "E-Wallet":
282
+ cred = [0 for i in range(len(date_list))]
283
+ e_wallet = [1 for i in range(len(date_list))]
284
+
285
+
286
+ for i in range(len(date_list)):
287
+ prod.append(di[prods])
288
+
289
+ date_strings = [date.strftime('%m/%d/%Y') for date in date_list]
290
+ is_hol = create_holiday_flags(date_strings)
291
+
292
+
293
+ forecast_data = pd.DataFrame({"Gender":gender, "Product line":prod, "Unit price":uni_pr, "cogs":cogs, "payment_Credit card":cred, "payment_Ewallet":e_wallet,
294
+ "is_holiday":is_hol, "year":years, "day":days, "month":months})
295
+
296
+ # st.dataframe(forecast_data)
297
+ forecast_data = forecast_data.values
298
+
299
+ # y_pred = int(np.round(model.predict(forecast_data)))
300
+ y_pred = [int(np.round(pred)) for pred in model.predict(forecast_data)]
301
+
302
+ line = px.line(x=date_list, y=y_pred, title="Quantity Sale forecast")
303
+ box = px.box(y=y_pred, title='To Identify Bursts or Lower Quantity Sale')
304
+ hist = px.histogram(x=y_pred, title = 'Sales Display in Area')
305
+ col11, col22 = st.columns(2)
306
+ col33, col44 = st.columns(2)
307
+
308
+ with col11:
309
+ st.plotly_chart(line, use_container_width=True)
310
+
311
+ with col22:
312
+ st.plotly_chart(box, use_container_width=True)
313
+
314
+ with col33:
315
+ st.write(f"AVG SALE FORECAST : {np.average(np.array(y_pred)).round(2)} QUANTITIES")
316
+
317
+ with col44:
318
+ st.plotly_chart(hist, use_container_width=True)