|
import gradio as gr |
|
from PIL import Image, ImageDraw, ImageFont |
|
import scipy.io.wavfile as wavfile |
|
|
|
|
|
|
|
from transformers import pipeline |
|
|
|
narrator = pipeline("text-to-speech", |
|
model="kakao-enterprise/vits-ljs") |
|
|
|
object_detector = pipeline("object-detection", |
|
model="facebook/detr-resnet-50") |
|
|
|
|
|
|
|
def generate_audio(text): |
|
|
|
narrated_text = narrator(text) |
|
|
|
|
|
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], |
|
data=narrated_text["audio"][0]) |
|
|
|
|
|
return "output.wav" |
|
|
|
|
|
|
|
|
|
|
|
def read_objects(detection_objects): |
|
|
|
object_counts = {} |
|
|
|
|
|
for detection in detection_objects: |
|
label = detection['label'] |
|
if label in object_counts: |
|
object_counts[label] += 1 |
|
else: |
|
object_counts[label] = 1 |
|
|
|
|
|
response = "This picture contains" |
|
labels = list(object_counts.keys()) |
|
for i, label in enumerate(labels): |
|
response += f" {object_counts[label]} {label}" |
|
if object_counts[label] > 1: |
|
response += "s" |
|
if i < len(labels) - 2: |
|
response += "," |
|
elif i == len(labels) - 2: |
|
response += " and" |
|
|
|
response += "." |
|
|
|
return response |
|
|
|
|
|
|
|
def draw_bounding_boxes(image, detections, font_path=None, font_size=20): |
|
""" |
|
Draws bounding boxes on the given image based on the detections. |
|
:param image: PIL.Image object |
|
:param detections: List of detection results, where each result is a dictionary containing |
|
'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin', |
|
'ymin', 'xmax', 'ymax'. |
|
:param font_path: Path to the TrueType font file to use for text. |
|
:param font_size: Size of the font to use for text. |
|
:return: PIL.Image object with bounding boxes drawn. |
|
""" |
|
|
|
draw_image = image.copy() |
|
draw = ImageDraw.Draw(draw_image) |
|
|
|
|
|
if font_path: |
|
font = ImageFont.truetype(font_path, font_size) |
|
else: |
|
|
|
font = ImageFont.load_default() |
|
|
|
|
|
for detection in detections: |
|
box = detection['box'] |
|
xmin = box['xmin'] |
|
ymin = box['ymin'] |
|
xmax = box['xmax'] |
|
ymax = box['ymax'] |
|
|
|
|
|
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) |
|
|
|
|
|
label = detection['label'] |
|
score = detection['score'] |
|
text = f"{label} {score:.2f}" |
|
|
|
|
|
if font_path: |
|
text_size = draw.textbbox((xmin, ymin), text, font=font) |
|
else: |
|
|
|
text_size = draw.textbbox((xmin, ymin), text) |
|
|
|
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") |
|
draw.text((xmin, ymin), text, fill="white", font=font) |
|
|
|
return draw_image |
|
|
|
|
|
def detect_object(image): |
|
raw_image = image |
|
output = object_detector(raw_image) |
|
processed_image = draw_bounding_boxes(raw_image, output) |
|
natural_text = read_objects(output) |
|
processed_audio = generate_audio(natural_text) |
|
return processed_image, processed_audio |
|
|
|
|
|
demo = gr.Interface(fn=detect_object, |
|
inputs=[gr.Image(label="Select Image",type="pil")], |
|
outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], |
|
title="AI-Powered Object Detection with Audio Feedback", |
|
description="Upload an image and get object detection results using the DETR model with a ResNet-50 backbone with Audio Feedback") |
|
demo.launch() |
|
|
|
|
|
|