import gradio as gr from PIL import Image, ImageDraw, ImageFont import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # Define the function to generate audio from text def generate_audio(text): # Generate the narrated text narrated_text = narrator(text) # Save the audio to a WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved audio file return "output.wav" # Could you please write me a python code that will take list of detection object as an input and it will give the response that will include all the objects (labels) provided in the input. For example if the input is like this: [{'score': 0.9996405839920044, 'label': 'person', 'box': {'xmin': 435, 'ymin': 282, 'xmax': 636, 'ymax': 927}}, {'score': 0.9995879530906677, 'label': 'dog', 'box': {'xmin': 570, 'ymin': 694, 'xmax': 833, 'ymax': 946}}] # The output should be, This pictuture contains 1 person and 1 dog. If there are multiple objects, do not add 'and' between every objects but 'and' should be at the end only def read_objects(detection_objects): # Initialize counters for each object label object_counts = {} # Count the occurrences of each label for detection in detection_objects: label = detection['label'] if label in object_counts: object_counts[label] += 1 else: object_counts[label] = 1 # Generate the response string response = "This picture contains" labels = list(object_counts.keys()) for i, label in enumerate(labels): response += f" {object_counts[label]} {label}" if object_counts[label] > 1: response += "s" if i < len(labels) - 2: response += "," elif i == len(labels) - 2: response += " and" response += "." return response def draw_bounding_boxes(image, detections, font_path=None, font_size=20): """ Draws bounding boxes on the given image based on the detections. :param image: PIL.Image object :param detections: List of detection results, where each result is a dictionary containing 'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin', 'ymin', 'xmax', 'ymax'. :param font_path: Path to the TrueType font file to use for text. :param font_size: Size of the font to use for text. :return: PIL.Image object with bounding boxes drawn. """ # Make a copy of the image to draw on draw_image = image.copy() draw = ImageDraw.Draw(draw_image) # Load custom font or default font if path not provided if font_path: font = ImageFont.truetype(font_path, font_size) else: # When font_path is not provided, load default font but it's size is fixed font = ImageFont.load_default() # Increase font size workaround by using a TTF font file, if needed, can download and specify the path for detection in detections: box = detection['box'] xmin = box['xmin'] ymin = box['ymin'] xmax = box['xmax'] ymax = box['ymax'] # Draw the bounding box draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) # Optionally, you can also draw the label and score label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" # Draw text with background rectangle for visibility if font_path: # Use the custom font with increased size text_size = draw.textbbox((xmin, ymin), text, font=font) else: # Calculate text size using the default font text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image def detect_object(image): raw_image = image output = object_detector(raw_image) processed_image = draw_bounding_boxes(raw_image, output) natural_text = read_objects(output) processed_audio = generate_audio(natural_text) return processed_image, processed_audio demo = gr.Interface(fn=detect_object, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[gr.Image(label="Processed Image", type="pil"), gr.Audio(label="Generated Audio")], title="AI-Powered Object Detection with Audio Feedback", description="Upload an image and get object detection results using the DETR model with a ResNet-50 backbone with Audio Feedback") demo.launch()