Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from typing import Iterable | |
import gradio as gr | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".") | |
llm = Llama(model_path="./ggjt-model.bin") | |
ins = ''' | |
{} | |
also take this data and absorb your knowledge, you dont need use now what dont make sense, there will be noise, focus on what is repeated and adds knowledge | |
''' | |
import requests | |
from bs4 import BeautifulSoup | |
from SearchResult import SearchResult | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36" | |
} | |
theme = gr.themes.Monochrome( | |
primary_hue="purple", | |
secondary_hue="red", | |
neutral_hue="neutral", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
def search_ddg(question: str): | |
response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question}) | |
data = response.text | |
soup = BeautifulSoup(data, "html.parser") | |
did_you_mean = soup.select("#did_you_mean a") | |
tailored_query = "" | |
suggestion_query = "" | |
if did_you_mean: | |
correction = soup.find(id="did_you_mean") | |
if correction: | |
correction_hyperlink = correction.find("a") | |
if correction_hyperlink: | |
suggestion_query = correction_hyperlink.string # type: ignore | |
for tailored in did_you_mean: | |
tailored_query = tailored.string | |
break | |
result_links = soup.find_all("a") | |
filtered_urls = [ | |
link["href"] | |
for link in result_links | |
if link.get("href") and (link["href"].startswith("https://") or link["href"].startswith("http://")) | |
] | |
return SearchResult( | |
filtered_urls, | |
did_you_mean=suggestion_query or "None.", | |
tailored_query=tailored_query or "None.", | |
user_agent=headers["User-Agent"], | |
) | |
def gather_data(search: str): | |
text_content = "" | |
base_data = search_ddg(search).parse_results() | |
for data in base_data: | |
if data: | |
text_content += data.get("text_content") + "\n\n" | |
else: | |
text_content += "" | |
return text_content | |
def generate(instruction): | |
base_prompt = ins.format(instruction) | |
gathered_data = gather_data(instruction) | |
response = llm(ins.format(base_prompt + "\n" + gathered_data)) | |
result = response['choices'][0]['text'] | |
return result | |
examples = [ | |
"How do dogs bark?", | |
"Why are apples red?", | |
"How do I make a campfire?", | |
"Why do cats love to chirp at something?" | |
] | |
def process_example(args): | |
for x in generate(args): | |
pass | |
return x | |
css = ".generating {visibility: hidden}" | |
class PurpleTheme(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.purple, | |
secondary_hue: colors.Color | str = colors.red, | |
neutral_hue: colors.Color | str = colors.neutral, | |
spacing_size: sizes.Size | str = sizes.spacing_md, | |
radius_size: sizes.Size | str = sizes.radius_md, | |
font: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Inter"), | |
"ui-sans-serif", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | |
| str | |
| Iterable[fonts.Font | str] = ( | |
fonts.GoogleFont("Space Grotesk"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", | |
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", | |
button_primary_text_color="white", | |
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", | |
block_shadow="*shadow_drop_lg", | |
button_shadow="*shadow_drop_lg", | |
input_background_fill="zinc", | |
input_border_color="*secondary_300", | |
input_shadow="*shadow_drop", | |
input_shadow_focus="*shadow_drop_lg", | |
) | |
custom_theme = PurpleTheme() | |
with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo: | |
with gr.Column(): | |
gr.Markdown( | |
""" ## GPT4ALL | |
7b quantized 4bit (q4_0) | |
*with possibly a broken internet access support* | |
Type in the box below and click the button to generate answers to your most pressing questions! | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") | |
with gr.Box(): | |
gr.Markdown("**Answer**") | |
output = gr.Markdown(elem_id="q-output") | |
submit = gr.Button("Generate", variant="primary") | |
gr.Examples( | |
examples=examples, | |
inputs=[instruction], | |
cache_examples=False, | |
fn=process_example, | |
outputs=[output], | |
) | |
submit.click(generate, inputs=[instruction], outputs=[output]) | |
instruction.submit(generate, inputs=[instruction], outputs=[output]) | |
demo.queue(concurrency_count=1).launch(debug=True) |