File size: 5,063 Bytes
e648a4e
 
 
 
 
 
 
 
 
 
 
 
3bf96ec
e648a4e
3bf96ec
 
 
e648a4e
 
3bf96ec
 
 
 
 
0b3dcc4
3bf96ec
 
e648a4e
0b3dcc4
 
 
 
 
e648a4e
 
3bf96ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db468f2
3bf96ec
 
0b3dcc4
3bf96ec
 
0b3dcc4
 
3bf96ec
0b3dcc4
 
 
e648a4e
 
0b3dcc4
 
 
 
e648a4e
 
 
0b3dcc4
 
 
 
e648a4e
 
 
0b3dcc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648a4e
 
 
 
 
0b3dcc4
 
 
 
 
db468f2
0b3dcc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648a4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes

from llama_cpp import Llama
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")

ins = '''
{}

also take this data and absorb your knowledge, you dont need use now what dont make sense, there will be noise, focus on what is repeated and adds knowledge

'''

import requests
from bs4 import BeautifulSoup
from SearchResult import SearchResult

headers = {
	"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}

theme = gr.themes.Monochrome(
	primary_hue="purple",
	secondary_hue="red",
	neutral_hue="neutral",
	radius_size=gr.themes.sizes.radius_sm,
	font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)

def search_ddg(question: str):
	response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question})
	data = response.text
	soup = BeautifulSoup(data, "html.parser")

	did_you_mean = soup.select("#did_you_mean a")

	tailored_query = ""
	suggestion_query = ""

	if did_you_mean:
		correction = soup.find(id="did_you_mean")
		if correction:
			correction_hyperlink = correction.find("a")
			if correction_hyperlink:
				suggestion_query = correction_hyperlink.string # type: ignore

		for tailored in did_you_mean:
			tailored_query = tailored.string
			break

	result_links = soup.find_all("a")
	filtered_urls = [
		link["href"]
		for link in result_links
		if link.get("href") and (link["href"].startswith("https://") or link["href"].startswith("http://"))
	]

	return SearchResult(
		filtered_urls,
		did_you_mean=suggestion_query or "None.",
		tailored_query=tailored_query or "None.",
		user_agent=headers["User-Agent"],
	)

def gather_data(search: str):
	text_content = ""
	base_data = search_ddg(search).parse_results()
	for data in base_data:
		if data:
			text_content += data.get("text_content") + "\n\n"
		else:
			text_content += ""
	return text_content

def generate(instruction):
	base_prompt = ins.format(instruction)
	gathered_data = gather_data(instruction)

	response = llm(ins.format(base_prompt  + "\n" + gathered_data))
	result = response['choices'][0]['text']
	return result

examples = [
	"How do dogs bark?",
	"Why are apples red?",
	"How do I make a campfire?",
	"Why do cats love to chirp at something?"
]

def process_example(args):
	for x in generate(args):
		pass
	return x

css = ".generating {visibility: hidden}"

class PurpleTheme(Base):
	def __init__(
		self,
		*,
		primary_hue: colors.Color | str = colors.purple,
		secondary_hue: colors.Color | str = colors.red,
		neutral_hue: colors.Color | str = colors.neutral,
		spacing_size: sizes.Size | str = sizes.spacing_md,
		radius_size: sizes.Size | str = sizes.radius_md,
		font: fonts.Font
		| str
		| Iterable[fonts.Font | str] = (
			fonts.GoogleFont("Inter"),
			"ui-sans-serif",
			"sans-serif",
		),
		font_mono: fonts.Font
		| str
		| Iterable[fonts.Font | str] = (
			fonts.GoogleFont("Space Grotesk"),
			"ui-monospace",
			"monospace",
		),
	):
		super().__init__(
			primary_hue=primary_hue,
			secondary_hue=secondary_hue,
			neutral_hue=neutral_hue,
			spacing_size=spacing_size,
			radius_size=radius_size,
			font=font,
			font_mono=font_mono,
		)
		super().set(
			button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
			button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
			button_primary_text_color="white",
			button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
			block_shadow="*shadow_drop_lg",
			button_shadow="*shadow_drop_lg",
			input_background_fill="zinc",
			input_border_color="*secondary_300",
			input_shadow="*shadow_drop",
			input_shadow_focus="*shadow_drop_lg",
		)


custom_theme = PurpleTheme()

with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo:
	with gr.Column():
		gr.Markdown(
			""" ## GPT4ALL

			7b quantized 4bit (q4_0)
            *with possibly a broken internet access support*

			Type in the box below and click the button to generate answers to your most pressing questions!

	  """
		)

		with gr.Row():
			with gr.Column(scale=3):
				instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")

				with gr.Box():
					gr.Markdown("**Answer**")
					output = gr.Markdown(elem_id="q-output")
				submit = gr.Button("Generate", variant="primary")
				gr.Examples(
					examples=examples,
					inputs=[instruction],
					cache_examples=False,
					fn=process_example,
					outputs=[output],
				)



	submit.click(generate, inputs=[instruction], outputs=[output])
	instruction.submit(generate, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=1).launch(debug=True)