File size: 5,427 Bytes
a99d343 e0413c6 cab2267 e0413c6 a99d343 cab2267 a99d343 b5c7bac a99d343 e0413c6 5953198 4306cde 853c062 a99d343 b5c7bac a99d343 4306cde 3db8d6f 4306cde 3db8d6f 4306cde 6983f8a 4306cde 7fdebcb 4306cde 7fdebcb 4306cde 7fdebcb 4306cde 7fdebcb 4306cde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from ultralytics import YOLOv10
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("kadirnar/yolov10", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
MODEL_PATH = 'yolov10n.pt'
model = YOLOv10(MODEL_PATH)
box_annotator = sv.BoxAnnotator()
category_dict = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
@spaces.GPU(duration=200)
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
model_path = download_models(model_id)
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy", label="Image")
model_id = gr.Dropdown(
label="Model",
choices=[
"yolov10n.pt",
"yolov10s.pt",
"yolov10m.pt",
"yolov10b.pt",
"yolov10x.pt",
],
value="yolov10s.pt",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image")
yolov10_infer.click(
fn=yolov10_inference,
inputs=[
image,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"huggingface.jpg",
"yolov10m.pt",
640,
0.25,
0.45,
],
[
"zidane.jpg",
"yolov10b.pt",
640,
0.25,
0.45,
],
],
fn=yolov10_inference,
inputs=[
image,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.Markdown(
"""
# YOLOv10: State-of-the-Art Object Detection
"""
)
gr.Markdown(
"""
Detect objects in images using the YOLOv10 model. Select a pre-trained model, adjust the inference settings, and upload an image to see the detected objects.
"""
)
with gr.Row():
gr.Markdown(
"""
Follow me for more projects and updates:
- [Twitter](https://twitter.com/kadirnar_ai)
- [GitHub](https://github.com/kadirnar)
- [LinkedIn](https://www.linkedin.com/in/kadir-nar/)
- [HuggingFace](https://www.huggingface.co/kadirnar/)
"""
)
app()
gradio_app.launch(debug=True) |