Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,25 @@ def download_models(model_id):
|
|
12 |
MODEL_PATH = 'yolov10n.pt'
|
13 |
model = YOLOv10(MODEL_PATH)
|
14 |
box_annotator = sv.BoxAnnotator()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU(duration=200)
|
17 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
@@ -20,7 +39,7 @@ def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold
|
|
20 |
detections = sv.Detections.from_ultralytics(results)
|
21 |
|
22 |
labels = [
|
23 |
-
f"{
|
24 |
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
25 |
]
|
26 |
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
|
|
12 |
MODEL_PATH = 'yolov10n.pt'
|
13 |
model = YOLOv10(MODEL_PATH)
|
14 |
box_annotator = sv.BoxAnnotator()
|
15 |
+
category_dict = {
|
16 |
+
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
|
17 |
+
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
|
18 |
+
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
|
19 |
+
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
|
20 |
+
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
|
21 |
+
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
|
22 |
+
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
|
23 |
+
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
|
24 |
+
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
|
25 |
+
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
|
26 |
+
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
|
27 |
+
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
|
28 |
+
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
|
29 |
+
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
|
30 |
+
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
|
31 |
+
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
32 |
+
}
|
33 |
+
|
34 |
|
35 |
@spaces.GPU(duration=200)
|
36 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
|
|
39 |
detections = sv.Detections.from_ultralytics(results)
|
40 |
|
41 |
labels = [
|
42 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
43 |
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
44 |
]
|
45 |
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|