Spaces:
Build error
Build error
File size: 16,689 Bytes
f084e2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
from cherche import retrieve
from sentence_transformers import SentenceTransformer, util
from transformers import RobertaTokenizer, RobertaModel, EncoderDecoderModel
from config import classifier_class_mapping, config
import pandas as pd
import numpy as np
import pickle
import torch
from sklearn.multiclass import OneVsRestClassifier
from sklearn.ensemble import RandomForestClassifier
class wrappedTokenizer(RobertaTokenizer):
def __call__(self, text_input):
return self.tokenize(text_input)
def generate_index(db):
db_cp = db.copy()
index_list = []
for id_, dirname in db_cp.values:
index_list.append(
{
'id': id_,
'library': dirname.lower()
})
return index_list
def load_db(db_metadata_path, db_constructor_path):
'''
Function to load dataframe
Params:
db_metadata_path (string): the path to the db_metadata file
db_constructor_path (string): the path to the db_constructor file
Output:
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
'''
db_metadata = pd.read_csv(db_metadata_path)
db_metadata.dropna(inplace=True)
db_constructor = pd.read_csv(db_constructor_path)
db_constructor.dropna(inplace=True)
return db_metadata, db_constructor
def load_retrieval_model_lexical(tokenizer_path, max_k, db_metadata):
'''
Function to load BM25 model
Params:
tokenizer_path (string): the path to a tokenizer (can be a path to either a huggingface model or local directory)
max_k (int): the maximum number of returned sequences
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
Returns:
retrieval_model: a retrieval model
'''
# generate index
index_list = generate_index(db_metadata[['id', 'library']])
# load model
tokenizer = wrappedTokenizer.from_pretrained(tokenizer_path)
retrieval_model = retrieve.BM25Okapi(
key='id',
on='library',
documents=index_list,
k=max_k,
tokenizer=tokenizer
)
return retrieval_model
def load_retrieval_model_deep_learning(model_path, max_k, db_metadata):
'''
Function to load a deep learning-based model
Params:
model_path (string): the path to the model (can be a path to either a huggingface model or local directory)
max_k (int): the maximum number of returned sequences
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
Returns:
retrieval_model: a retrieval model
'''
# generate index
index_list = generate_index(db_metadata[['id', 'library']])
# load model
retrieval_model = retrieve.Encoder(
key='id',
on='library',
encoder=SentenceTransformer(model_path).encode,
k=max_k,
path=f"../temp/dl.pkl"
)
retrieval_model = dl_retriever.add(documents=index_list)
return retrieval_model
def load_generative_model_codebert(model_path):
'''
Function load a generative model using codebert checkpoint
Params:
model_path (string): path to the model (can be a path to either a huggingface model or local directory)
Returns:
tokenizer: a huggingface tokenizer
generative_model: a generative model to generate API pattern given the library name as the input
'''
tokenizer = RobertaTokenizer.from_pretrained(model_path)
generative_model = EncoderDecoderModel.from_pretrained(model_path)
return tokenizer, generative_model
def get_metadata_library(predictions, db_metadata):
'''
Function to get the metadata of a library using the library unique id
Params:
predictions (list): a list of dictionary containing the prediction details
db_metadata: a dataframe containing metadata information about the library
Returns:
metadata_dict (dict): a dictionary where the key is the metadata type and the value is the metadata value
'''
predictions_cp = predictions.copy()
for prediction_dict in predictions_cp:
temp_db = db_metadata[db_metadata.id==prediction_dict.get('id')]
assert(len(temp_db)==1)
prediction_dict['Sensor Type'] = temp_db.iloc[0]['cat'].capitalize()
prediction_dict['Github URL'] = temp_db.iloc[0]['url']
# prefer the description from the arduino library list, if not found use the repo description
if temp_db.iloc[0].desc_ardulib != 'nan':
prediction_dict['Description'] = temp_db.iloc[0].desc_ardulib
elif temp_db.iloc[0].desc_repo != 'nan':
prediction_dict['Description'] = temp_db.iloc[0].desc_repo
else:
prediction_dict['Description'] = "Description not found"
print(prediction_dict)
print("-----------------------------------------------------------------")
return predictions_cp
def id_to_libname(id_, db_metadata):
'''
Function to convert a library id to its library name
Params:
id_ (int): a unique library id
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
Returns:
library_name (string): the library name that corresponds to the input id
'''
temp_db = db_metadata[db_metadata.id==id_]
assert(len(temp_db)==1)
library_name = temp_db.iloc[0].library
return library_name
def retrieve_libraries(retrieval_model, model_input, db_metadata):
'''
Function to retrieve a set of relevant libraries using a model based on the input query
Params:
retrieval_model: a model to perform retrieval
model_input (string): an input query from the user
Returns:
library_ids (list): a list of library unique ids
library_names (list): a list of library names
'''
results = retrieval_model(model_input)
library_ids = [item.get('id') for item in results]
library_names = [id_to_libname(item, db_metadata) for item in library_ids]
return library_ids, library_names
def prepare_input_generative_model(library_ids, db_constructor):
'''
Function to prepare the input of the model to generate API usage patterns
Params:
library_ids (list): a list of library ids
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
Returns:
output_dict (dictionary): a dictionary where the key is library id and the value is a list of valid inputs
'''
output_dict = {}
for id_ in library_ids:
temp_db = db_constructor[db_constructor.id==id_]
output_dict[id_] = []
for id__, library_name, methods, constructor in temp_db.values:
output_dict[id_].append(
f'{library_name} [SEP] {constructor}'
)
return output_dict
def generate_api_usage_patterns(generative_model, tokenizer, model_input, num_beams, num_return_sequences):
'''
Function to generate API usage patterns
Params:
generative_model: a huggingface model
tokenizer: a huggingface tokenizer
model_input (string): a string in the form of <library-name> [SEP] constructor
num_beams (int): the beam width used for decoding
num_return_sequences (int): how many API usage patterns are returned by the model
Returns:
api_usage_patterns (list): a list of API usage patterns
'''
model_input = tokenizer(model_input, return_tensors='pt').input_ids
model_output = generative_model.generate(
model_input,
num_beams=num_beams,
num_return_sequences=num_return_sequences
)
api_usage_patterns = tokenizer.batch_decode(
model_output,
skip_special_tokens=True
)
return api_usage_patterns
def generate_api_usage_patterns_batch(generative_model, tokenizer, library_ids, db_constructor, num_beams, num_return_sequences):
'''
Function to generate API usage patterns in batch
Params:
generative_model: a huggingface model
tokenizer: a huggingface tokenizer
library_ids (list): a list of libary ids
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
num_beams (int): the beam width used for decoding
num_return_sequences (int): how many API usage patterns are returned by the model
Returns:
predictions (list): a list of dictionary containing the api usage patterns, library name, and id
'''
input_generative_model_dict = prepare_input_generative_model(library_ids, db_constructor)
predictions = []
for id_ in input_generative_model_dict:
temp_dict = {
'id': id_,
'library_name': None,
'hw_config': None,
'usage_patterns': {}
}
for input_generative_model in input_generative_model_dict.get(id_):
api_usage_patterns = generate_api_usage_patterns(
generative_model,
tokenizer,
input_generative_model,
num_beams,
num_return_sequences
)
temp = input_generative_model.split("[SEP]")
library_name = temp[0].strip()
constructor = temp[1].strip()
assert(constructor not in temp_dict.get('usage_patterns'))
temp_dict['usage_patterns'][constructor] = api_usage_patterns
assert(temp_dict.get('library_name')==None)
temp_dict['library_name'] = library_name
predictions.append(temp_dict)
return predictions
# def generate_api_usage_patterns(generative_model, tokenizer, model_inputs, num_beams, num_return_sequences):
# '''
# Function to generate API usage patterns
# Params:
# generative_model: a huggingface model
# tokenizer: a huggingface tokenizer
# model_inputs (list): a list of <library-name> [SEP] <constructor>
# num_beams (int): the beam width used for decoding
# num_return_sequences (int): how many API usage patterns are returned by the model
# Returns:
# api_usage_patterns (list): a list of API usage patterns
# '''
# model_inputs = tokenizer(
# model_inputs,
# max_length=max_length,
# padding='max_length',
# return_tensors='pt',
# truncation=True)
# model_output = generative_model.generate(
# **model_inputs,
# num_beams=num_beams,
# num_return_sequences=num_return_sequences
# )
# api_usage_patterns = tokenizer.batch_decode(
# model_output,
# skip_special_tokens=True
# )
# api_usage_patterns = [api_usage_patterns[i:i+num_return_sequences] for i in range(0, len(api_usage_patterns), num_return_sequences)]
# return api_usage_patterns
def prepare_input_classification_model(id_, db_metadata):
'''
Function to get a feature for a classification model using library id
Params:
id_ (int): a unique library id
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
Returns:
feature (string): a feature used for the classification model input
'''
temp_db = db_metadata[db_metadata.id == id_]
assert(len(temp_db)==1)
feature = temp_db.iloc[0].features
return feature
def load_hw_classifier(model_path_classifier, model_path_classifier_head):
'''
Function to load a classifier model and classifier head
Params:
model_path_classifier (string): path to the classifier checkpoint (can be either huggingface path or local directory)
model_path_classifier_head (string): path to the classifier head checkpoint (should be a local directory)
Returns:
classifier_model: a huggingface model
classifier_head: a classifier model (can be either svm or rf)
tokenizer: a huggingface tokenizer
'''
tokenizer = RobertaTokenizer.from_pretrained(model_path_classifier)
classifier_model = RobertaModel.from_pretrained(model_path_classifier)
with open(model_path_classifier_head, 'rb') as f:
classifier_head = pickle.load(f)
return classifier_model, classifier_head, tokenizer
def predict_hw_config(classifier_model, classifier_tokenizer, classifier_head, library_ids, db_metadata, max_length):
'''
Function to predict hardware configs
Params:
classifier_model: a huggingface model to convert a feature to a feature vector
classifier_tokenizer: a huggingface tokenizer
classifier_head: a classifier head
library_ids (list): a list of library ids
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
max_length (int): max length of the tokenizer output
Returns:
prediction (list): a list of prediction
'''
features = [prepare_input_classification_model(id_, db_metadata) for id_ in library_ids]
tokenized_features = classifier_tokenizer(
features,
max_length=max_length,
padding='max_length',
return_tensors='pt',
truncation=True
)
with torch.no_grad():
embedding_features = classifier_model(**tokenized_features).pooler_output.numpy()
prediction = classifier_head.predict_proba(embedding_features).tolist()
prediction = np.argmax(prediction, axis=1).tolist()
prediction = [classifier_class_mapping.get(idx) for idx in prediction]
return prediction
def initialize_all_components(config):
'''
Function to initialize all components of ArduProg
Params:
config (dict): a dictionary containing the configuration to initialize all components
Returns:
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
model_retrieval, model_generative : a huggingface model
tokenizer_generative, tokenizer_classifier: a huggingface tokenizer
model_classifier: a huggingface model
classifier_head: a random forest model
'''
# load db
db_metadata, db_constructor = load_db(
config.get('db_metadata_path'),
config.get('db_constructor_path')
)
# load model
model_retrieval = load_retrieval_model_lexical(
config.get('tokenizer_path_retrieval'),
config.get('max_k'),
db_metadata,
)
tokenizer_generative, model_generative = load_generative_model_codebert(config.get('model_path_generative'))
model_classifier, classifier_head, tokenizer_classifier = load_hw_classifier(
config.get('model_path_classifier'),
config.get('classifier_head_path')
)
return db_metadata, db_constructor, model_retrieval, model_generative, tokenizer_generative, model_classifier, classifier_head, tokenizer_classifier
def make_predictions(input_query,
model_retrieval,
model_generative,
model_classifier, classifier_head,
tokenizer_generative, tokenizer_classifier,
db_metadata, db_constructor,
config):
'''
Function to retrieve relevant libraries, generate API usage patterns, and predict the hw configs
Params:
input_query (string): a query from the user
model_retrieval, model_generative, model_classifier: a huggingface model
classifier_head: a random forest classifier
toeknizer_generative, tokenizer_classifier: a hugggingface tokenizer,
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
config (dict): a dictionary containing the configuration to initialize all components
Returns:
predictions (list): a list of dictionary containing the prediction details
'''
library_ids, library_names = retrieve_libraries(model_retrieval, input_query, db_metadata)
predictions = generate_api_usage_patterns_batch(
model_generative,
tokenizer_generative,
library_ids,
db_constructor,
config.get('num_beams'),
config.get('num_return_sequences')
)
hw_configs = predict_hw_config(
model_classifier,
tokenizer_classifier,
classifier_head,
library_ids,
db_metadata,
config.get('max_length')
)
for output_dict, hw_config in zip(predictions, hw_configs):
output_dict['hw_config'] = hw_config
predictions = get_metadata_library(predictions, db_metadata)
return predictions |