Spaces:
Build error
Build error
Create backend_utils.py
Browse files- backend_utils.py +461 -0
backend_utils.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cherche import retrieve
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from transformers import RobertaTokenizer, RobertaModel, EncoderDecoderModel
|
4 |
+
from config import classifier_class_mapping, config
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import pickle
|
8 |
+
import torch
|
9 |
+
from sklearn.multiclass import OneVsRestClassifier
|
10 |
+
from sklearn.ensemble import RandomForestClassifier
|
11 |
+
|
12 |
+
class wrappedTokenizer(RobertaTokenizer):
|
13 |
+
def __call__(self, text_input):
|
14 |
+
return self.tokenize(text_input)
|
15 |
+
|
16 |
+
def generate_index(db):
|
17 |
+
db_cp = db.copy()
|
18 |
+
index_list = []
|
19 |
+
for id_, dirname in db_cp.values:
|
20 |
+
index_list.append(
|
21 |
+
{
|
22 |
+
'id': id_,
|
23 |
+
'library': dirname.lower()
|
24 |
+
})
|
25 |
+
return index_list
|
26 |
+
|
27 |
+
def load_db(db_metadata_path, db_constructor_path):
|
28 |
+
'''
|
29 |
+
Function to load dataframe
|
30 |
+
|
31 |
+
Params:
|
32 |
+
db_metadata_path (string): the path to the db_metadata file
|
33 |
+
db_constructor_path (string): the path to the db_constructor file
|
34 |
+
|
35 |
+
Output:
|
36 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
37 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
38 |
+
'''
|
39 |
+
db_metadata = pd.read_csv(db_metadata_path)
|
40 |
+
db_metadata.dropna(inplace=True)
|
41 |
+
db_constructor = pd.read_csv(db_constructor_path)
|
42 |
+
db_constructor.dropna(inplace=True)
|
43 |
+
return db_metadata, db_constructor
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def load_retrieval_model_lexical(tokenizer_path, max_k, db_metadata):
|
48 |
+
'''
|
49 |
+
Function to load BM25 model
|
50 |
+
|
51 |
+
Params:
|
52 |
+
tokenizer_path (string): the path to a tokenizer (can be a path to either a huggingface model or local directory)
|
53 |
+
max_k (int): the maximum number of returned sequences
|
54 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
retrieval_model: a retrieval model
|
58 |
+
'''
|
59 |
+
# generate index
|
60 |
+
index_list = generate_index(db_metadata[['id', 'library']])
|
61 |
+
|
62 |
+
# load model
|
63 |
+
tokenizer = wrappedTokenizer.from_pretrained(tokenizer_path)
|
64 |
+
retrieval_model = retrieve.BM25Okapi(
|
65 |
+
key='id',
|
66 |
+
on='library',
|
67 |
+
documents=index_list,
|
68 |
+
k=max_k,
|
69 |
+
tokenizer=tokenizer
|
70 |
+
)
|
71 |
+
return retrieval_model
|
72 |
+
|
73 |
+
|
74 |
+
def load_retrieval_model_deep_learning(model_path, max_k, db_metadata):
|
75 |
+
'''
|
76 |
+
Function to load a deep learning-based model
|
77 |
+
|
78 |
+
Params:
|
79 |
+
model_path (string): the path to the model (can be a path to either a huggingface model or local directory)
|
80 |
+
max_k (int): the maximum number of returned sequences
|
81 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
retrieval_model: a retrieval model
|
85 |
+
'''
|
86 |
+
# generate index
|
87 |
+
index_list = generate_index(db_metadata[['id', 'library']])
|
88 |
+
|
89 |
+
# load model
|
90 |
+
retrieval_model = retrieve.Encoder(
|
91 |
+
key='id',
|
92 |
+
on='library',
|
93 |
+
encoder=SentenceTransformer(model_path).encode,
|
94 |
+
k=max_k,
|
95 |
+
path=f"../temp/dl.pkl"
|
96 |
+
)
|
97 |
+
retrieval_model = dl_retriever.add(documents=index_list)
|
98 |
+
|
99 |
+
return retrieval_model
|
100 |
+
|
101 |
+
def load_generative_model_codebert(model_path):
|
102 |
+
'''
|
103 |
+
Function load a generative model using codebert checkpoint
|
104 |
+
|
105 |
+
Params:
|
106 |
+
model_path (string): path to the model (can be a path to either a huggingface model or local directory)
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
tokenizer: a huggingface tokenizer
|
110 |
+
generative_model: a generative model to generate API pattern given the library name as the input
|
111 |
+
'''
|
112 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_path)
|
113 |
+
generative_model = EncoderDecoderModel.from_pretrained(model_path)
|
114 |
+
return tokenizer, generative_model
|
115 |
+
|
116 |
+
|
117 |
+
def get_metadata_library(predictions, db_metadata):
|
118 |
+
'''
|
119 |
+
Function to get the metadata of a library using the library unique id
|
120 |
+
|
121 |
+
Params:
|
122 |
+
predictions (list): a list of dictionary containing the prediction details
|
123 |
+
db_metadata: a dataframe containing metadata information about the library
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
metadata_dict (dict): a dictionary where the key is the metadata type and the value is the metadata value
|
127 |
+
'''
|
128 |
+
predictions_cp = predictions.copy()
|
129 |
+
for prediction_dict in predictions_cp:
|
130 |
+
temp_db = db_metadata[db_metadata.id==prediction_dict.get('id')]
|
131 |
+
assert(len(temp_db)==1)
|
132 |
+
|
133 |
+
prediction_dict['Sensor Type'] = temp_db.iloc[0]['cat'].capitalize()
|
134 |
+
prediction_dict['Github URL'] = temp_db.iloc[0]['url']
|
135 |
+
|
136 |
+
# prefer the description from the arduino library list, if not found use the repo description
|
137 |
+
if temp_db.iloc[0].desc_ardulib != 'nan':
|
138 |
+
prediction_dict['Description'] = temp_db.iloc[0].desc_ardulib
|
139 |
+
|
140 |
+
elif temp_db.iloc[0].desc_repo != 'nan':
|
141 |
+
prediction_dict['Description'] = temp_db.iloc[0].desc_repo
|
142 |
+
|
143 |
+
else:
|
144 |
+
prediction_dict['Description'] = "Description not found"
|
145 |
+
print(prediction_dict)
|
146 |
+
print("-----------------------------------------------------------------")
|
147 |
+
return predictions_cp
|
148 |
+
|
149 |
+
def id_to_libname(id_, db_metadata):
|
150 |
+
'''
|
151 |
+
Function to convert a library id to its library name
|
152 |
+
|
153 |
+
Params:
|
154 |
+
id_ (int): a unique library id
|
155 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
library_name (string): the library name that corresponds to the input id
|
159 |
+
'''
|
160 |
+
temp_db = db_metadata[db_metadata.id==id_]
|
161 |
+
assert(len(temp_db)==1)
|
162 |
+
library_name = temp_db.iloc[0].library
|
163 |
+
return library_name
|
164 |
+
|
165 |
+
|
166 |
+
def retrieve_libraries(retrieval_model, model_input, db_metadata):
|
167 |
+
'''
|
168 |
+
Function to retrieve a set of relevant libraries using a model based on the input query
|
169 |
+
|
170 |
+
Params:
|
171 |
+
retrieval_model: a model to perform retrieval
|
172 |
+
model_input (string): an input query from the user
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
library_ids (list): a list of library unique ids
|
176 |
+
library_names (list): a list of library names
|
177 |
+
'''
|
178 |
+
results = retrieval_model(model_input)
|
179 |
+
library_ids = [item.get('id') for item in results]
|
180 |
+
library_names = [id_to_libname(item, db_metadata) for item in library_ids]
|
181 |
+
return library_ids, library_names
|
182 |
+
|
183 |
+
def prepare_input_generative_model(library_ids, db_constructor):
|
184 |
+
'''
|
185 |
+
Function to prepare the input of the model to generate API usage patterns
|
186 |
+
|
187 |
+
Params:
|
188 |
+
library_ids (list): a list of library ids
|
189 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
output_dict (dictionary): a dictionary where the key is library id and the value is a list of valid inputs
|
193 |
+
'''
|
194 |
+
output_dict = {}
|
195 |
+
for id_ in library_ids:
|
196 |
+
temp_db = db_constructor[db_constructor.id==id_]
|
197 |
+
output_dict[id_] = []
|
198 |
+
for id__, library_name, methods, constructor in temp_db.values:
|
199 |
+
output_dict[id_].append(
|
200 |
+
f'{library_name} [SEP] {constructor}'
|
201 |
+
)
|
202 |
+
return output_dict
|
203 |
+
|
204 |
+
def generate_api_usage_patterns(generative_model, tokenizer, model_input, num_beams, num_return_sequences):
|
205 |
+
'''
|
206 |
+
Function to generate API usage patterns
|
207 |
+
|
208 |
+
Params:
|
209 |
+
generative_model: a huggingface model
|
210 |
+
tokenizer: a huggingface tokenizer
|
211 |
+
model_input (string): a string in the form of <library-name> [SEP] constructor
|
212 |
+
num_beams (int): the beam width used for decoding
|
213 |
+
num_return_sequences (int): how many API usage patterns are returned by the model
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
api_usage_patterns (list): a list of API usage patterns
|
217 |
+
'''
|
218 |
+
model_input = tokenizer(model_input, return_tensors='pt').input_ids
|
219 |
+
model_output = generative_model.generate(
|
220 |
+
model_input,
|
221 |
+
num_beams=num_beams,
|
222 |
+
num_return_sequences=num_return_sequences
|
223 |
+
)
|
224 |
+
api_usage_patterns = tokenizer.batch_decode(
|
225 |
+
model_output,
|
226 |
+
skip_special_tokens=True
|
227 |
+
)
|
228 |
+
return api_usage_patterns
|
229 |
+
|
230 |
+
def generate_api_usage_patterns_batch(generative_model, tokenizer, library_ids, db_constructor, num_beams, num_return_sequences):
|
231 |
+
'''
|
232 |
+
Function to generate API usage patterns in batch
|
233 |
+
|
234 |
+
Params:
|
235 |
+
generative_model: a huggingface model
|
236 |
+
tokenizer: a huggingface tokenizer
|
237 |
+
library_ids (list): a list of libary ids
|
238 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
239 |
+
num_beams (int): the beam width used for decoding
|
240 |
+
num_return_sequences (int): how many API usage patterns are returned by the model
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
predictions (list): a list of dictionary containing the api usage patterns, library name, and id
|
244 |
+
'''
|
245 |
+
input_generative_model_dict = prepare_input_generative_model(library_ids, db_constructor)
|
246 |
+
|
247 |
+
predictions = []
|
248 |
+
for id_ in input_generative_model_dict:
|
249 |
+
temp_dict = {
|
250 |
+
'id': id_,
|
251 |
+
'library_name': None,
|
252 |
+
'hw_config': None,
|
253 |
+
'usage_patterns': {}
|
254 |
+
}
|
255 |
+
for input_generative_model in input_generative_model_dict.get(id_):
|
256 |
+
api_usage_patterns = generate_api_usage_patterns(
|
257 |
+
generative_model,
|
258 |
+
tokenizer,
|
259 |
+
input_generative_model,
|
260 |
+
num_beams,
|
261 |
+
num_return_sequences
|
262 |
+
)
|
263 |
+
|
264 |
+
temp = input_generative_model.split("[SEP]")
|
265 |
+
library_name = temp[0].strip()
|
266 |
+
constructor = temp[1].strip()
|
267 |
+
|
268 |
+
assert(constructor not in temp_dict.get('usage_patterns'))
|
269 |
+
temp_dict['usage_patterns'][constructor] = api_usage_patterns
|
270 |
+
|
271 |
+
assert(temp_dict.get('library_name')==None)
|
272 |
+
temp_dict['library_name'] = library_name
|
273 |
+
predictions.append(temp_dict)
|
274 |
+
return predictions
|
275 |
+
|
276 |
+
# def generate_api_usage_patterns(generative_model, tokenizer, model_inputs, num_beams, num_return_sequences):
|
277 |
+
# '''
|
278 |
+
# Function to generate API usage patterns
|
279 |
+
|
280 |
+
# Params:
|
281 |
+
# generative_model: a huggingface model
|
282 |
+
# tokenizer: a huggingface tokenizer
|
283 |
+
# model_inputs (list): a list of <library-name> [SEP] <constructor>
|
284 |
+
# num_beams (int): the beam width used for decoding
|
285 |
+
# num_return_sequences (int): how many API usage patterns are returned by the model
|
286 |
+
|
287 |
+
# Returns:
|
288 |
+
# api_usage_patterns (list): a list of API usage patterns
|
289 |
+
# '''
|
290 |
+
# model_inputs = tokenizer(
|
291 |
+
# model_inputs,
|
292 |
+
# max_length=max_length,
|
293 |
+
# padding='max_length',
|
294 |
+
# return_tensors='pt',
|
295 |
+
# truncation=True)
|
296 |
+
|
297 |
+
# model_output = generative_model.generate(
|
298 |
+
# **model_inputs,
|
299 |
+
# num_beams=num_beams,
|
300 |
+
# num_return_sequences=num_return_sequences
|
301 |
+
# )
|
302 |
+
# api_usage_patterns = tokenizer.batch_decode(
|
303 |
+
# model_output,
|
304 |
+
# skip_special_tokens=True
|
305 |
+
# )
|
306 |
+
|
307 |
+
# api_usage_patterns = [api_usage_patterns[i:i+num_return_sequences] for i in range(0, len(api_usage_patterns), num_return_sequences)]
|
308 |
+
# return api_usage_patterns
|
309 |
+
|
310 |
+
def prepare_input_classification_model(id_, db_metadata):
|
311 |
+
'''
|
312 |
+
Function to get a feature for a classification model using library id
|
313 |
+
|
314 |
+
Params:
|
315 |
+
id_ (int): a unique library id
|
316 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
feature (string): a feature used for the classification model input
|
320 |
+
'''
|
321 |
+
temp_db = db_metadata[db_metadata.id == id_]
|
322 |
+
assert(len(temp_db)==1)
|
323 |
+
feature = temp_db.iloc[0].features
|
324 |
+
return feature
|
325 |
+
|
326 |
+
def load_hw_classifier(model_path_classifier, model_path_classifier_head):
|
327 |
+
'''
|
328 |
+
Function to load a classifier model and classifier head
|
329 |
+
|
330 |
+
Params:
|
331 |
+
model_path_classifier (string): path to the classifier checkpoint (can be either huggingface path or local directory)
|
332 |
+
model_path_classifier_head (string): path to the classifier head checkpoint (should be a local directory)
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
classifier_model: a huggingface model
|
336 |
+
classifier_head: a classifier model (can be either svm or rf)
|
337 |
+
tokenizer: a huggingface tokenizer
|
338 |
+
'''
|
339 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_path_classifier)
|
340 |
+
classifier_model = RobertaModel.from_pretrained(model_path_classifier)
|
341 |
+
with open(model_path_classifier_head, 'rb') as f:
|
342 |
+
classifier_head = pickle.load(f)
|
343 |
+
return classifier_model, classifier_head, tokenizer
|
344 |
+
|
345 |
+
def predict_hw_config(classifier_model, classifier_tokenizer, classifier_head, library_ids, db_metadata, max_length):
|
346 |
+
'''
|
347 |
+
Function to predict hardware configs
|
348 |
+
|
349 |
+
Params:
|
350 |
+
classifier_model: a huggingface model to convert a feature to a feature vector
|
351 |
+
classifier_tokenizer: a huggingface tokenizer
|
352 |
+
classifier_head: a classifier head
|
353 |
+
library_ids (list): a list of library ids
|
354 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
355 |
+
max_length (int): max length of the tokenizer output
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
prediction (list): a list of prediction
|
359 |
+
'''
|
360 |
+
|
361 |
+
features = [prepare_input_classification_model(id_, db_metadata) for id_ in library_ids]
|
362 |
+
tokenized_features = classifier_tokenizer(
|
363 |
+
features,
|
364 |
+
max_length=max_length,
|
365 |
+
padding='max_length',
|
366 |
+
return_tensors='pt',
|
367 |
+
truncation=True
|
368 |
+
)
|
369 |
+
with torch.no_grad():
|
370 |
+
embedding_features = classifier_model(**tokenized_features).pooler_output.numpy()
|
371 |
+
prediction = classifier_head.predict_proba(embedding_features).tolist()
|
372 |
+
prediction = np.argmax(prediction, axis=1).tolist()
|
373 |
+
prediction = [classifier_class_mapping.get(idx) for idx in prediction]
|
374 |
+
return prediction
|
375 |
+
|
376 |
+
|
377 |
+
def initialize_all_components(config):
|
378 |
+
'''
|
379 |
+
Function to initialize all components of ArduProg
|
380 |
+
|
381 |
+
Params:
|
382 |
+
config (dict): a dictionary containing the configuration to initialize all components
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
386 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
387 |
+
model_retrieval, model_generative : a huggingface model
|
388 |
+
tokenizer_generative, tokenizer_classifier: a huggingface tokenizer
|
389 |
+
model_classifier: a huggingface model
|
390 |
+
classifier_head: a random forest model
|
391 |
+
'''
|
392 |
+
# load db
|
393 |
+
db_metadata, db_constructor = load_db(
|
394 |
+
config.get('db_metadata_path'),
|
395 |
+
config.get('db_constructor_path')
|
396 |
+
)
|
397 |
+
|
398 |
+
# load model
|
399 |
+
model_retrieval = load_retrieval_model_lexical(
|
400 |
+
config.get('tokenizer_path_retrieval'),
|
401 |
+
config.get('max_k'),
|
402 |
+
db_metadata,
|
403 |
+
)
|
404 |
+
|
405 |
+
tokenizer_generative, model_generative = load_generative_model_codebert(config.get('model_path_generative'))
|
406 |
+
|
407 |
+
model_classifier, classifier_head, tokenizer_classifier = load_hw_classifier(
|
408 |
+
config.get('model_path_classifier'),
|
409 |
+
config.get('classifier_head_path')
|
410 |
+
)
|
411 |
+
|
412 |
+
return db_metadata, db_constructor, model_retrieval, model_generative, tokenizer_generative, model_classifier, classifier_head, tokenizer_classifier
|
413 |
+
|
414 |
+
def make_predictions(input_query,
|
415 |
+
model_retrieval,
|
416 |
+
model_generative,
|
417 |
+
model_classifier, classifier_head,
|
418 |
+
tokenizer_generative, tokenizer_classifier,
|
419 |
+
db_metadata, db_constructor,
|
420 |
+
config):
|
421 |
+
'''
|
422 |
+
Function to retrieve relevant libraries, generate API usage patterns, and predict the hw configs
|
423 |
+
|
424 |
+
Params:
|
425 |
+
input_query (string): a query from the user
|
426 |
+
model_retrieval, model_generative, model_classifier: a huggingface model
|
427 |
+
classifier_head: a random forest classifier
|
428 |
+
toeknizer_generative, tokenizer_classifier: a hugggingface tokenizer,
|
429 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
430 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
431 |
+
config (dict): a dictionary containing the configuration to initialize all components
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
predictions (list): a list of dictionary containing the prediction details
|
435 |
+
'''
|
436 |
+
library_ids, library_names = retrieve_libraries(model_retrieval, input_query, db_metadata)
|
437 |
+
|
438 |
+
predictions = generate_api_usage_patterns_batch(
|
439 |
+
model_generative,
|
440 |
+
tokenizer_generative,
|
441 |
+
library_ids,
|
442 |
+
db_constructor,
|
443 |
+
config.get('num_beams'),
|
444 |
+
config.get('num_return_sequences')
|
445 |
+
)
|
446 |
+
|
447 |
+
hw_configs = predict_hw_config(
|
448 |
+
model_classifier,
|
449 |
+
tokenizer_classifier,
|
450 |
+
classifier_head,
|
451 |
+
library_ids,
|
452 |
+
db_metadata,
|
453 |
+
config.get('max_length')
|
454 |
+
)
|
455 |
+
|
456 |
+
for output_dict, hw_config in zip(predictions, hw_configs):
|
457 |
+
output_dict['hw_config'] = hw_config
|
458 |
+
|
459 |
+
predictions = get_metadata_library(predictions, db_metadata)
|
460 |
+
|
461 |
+
return predictions
|