Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import cv2 | |
import kornia | |
import numpy as np | |
import torch | |
from loguru import logger | |
from torchaudio.io import StreamReader | |
from torchaudio.io import StreamWriter | |
from benchmark.face_pipeline import alignFace | |
from benchmark.face_pipeline import FaceDetector | |
from benchmark.face_pipeline import inverse_transform_batch | |
from benchmark.face_pipeline import SoftErosion | |
from configs.train_config import TrainConfig | |
from models.model import HifiFace | |
class VideoSwap: | |
def __init__(self, cfg): | |
self.source_face = cfg.source_face | |
self.target_video = cfg.target_video | |
self.facedetector = FaceDetector(cfg.face_detector_weights) | |
self.alignface = alignFace() | |
self.work_dir = cfg.work_dir | |
opt = TrainConfig() | |
opt.use_ddp = False | |
self.device = "cuda" | |
self.ffmpeg_device = cfg.ffmpeg_device | |
self.num_frames = 10 | |
self.kps_window = [] | |
checkpoint = (cfg.model_path, cfg.model_idx) | |
self.model = HifiFace( | |
opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint | |
) | |
self.model.eval() | |
os.makedirs(self.work_dir, exist_ok=True) | |
self.swapped_video = os.path.join(self.work_dir, "swapped_video.mp4") | |
# model-idx_image-name_target-video-name.mp4 | |
swapped_with_audio_name = ( | |
str(cfg.model_idx) | |
+ "_" | |
+ os.path.basename(self.source_face).split(".")[0] | |
+ "_" | |
+ os.path.basename(self.target_video).split(".")[0] | |
+ ".mp4" | |
) | |
# 带有音频的换脸视频 | |
self.swapped_video_with_audio = os.path.join(self.work_dir, swapped_with_audio_name) | |
video = cv2.VideoCapture(self.target_video) | |
# 获取视频宽度 | |
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
# 获取视频高度 | |
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
# 获取帧率 | |
frame_rate = int(video.get(cv2.CAP_PROP_FPS)) | |
video.release() | |
self.frame_size = (frame_height, frame_width) | |
if self.ffmpeg_device == "cuda": | |
self.decode_config = { | |
"frames_per_chunk": 1, | |
"decoder": "h264_cuvid", | |
"decoder_option": {"gpu": "0"}, | |
"hw_accel": "cuda:0", | |
} | |
self.encode_config = { | |
"encoder": "h264_nvenc", # GPU Encoder | |
"encoder_format": "yuv444p", | |
"encoder_option": {"gpu": "0"}, # Run encoding on the cuda:0 device | |
"hw_accel": "cuda:0", # Data comes from cuda:0 device | |
"frame_rate": frame_rate, | |
"height": frame_height, | |
"width": frame_width, | |
"format": "yuv444p", | |
} | |
else: | |
self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"} | |
self.encode_config = { | |
"encoder": "libx264", | |
"encoder_format": "yuv444p", | |
"frame_rate": frame_rate, | |
"height": frame_height, | |
"width": frame_width, | |
"format": "yuv444p", | |
} | |
self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device) | |
def yuv_to_rgb(self, img): | |
img = img.to(torch.float) | |
y = img[..., 0, :, :] | |
u = img[..., 1, :, :] | |
v = img[..., 2, :, :] | |
y /= 255 | |
u = u / 255 - 0.5 | |
v = v / 255 - 0.5 | |
r = y + 1.14 * v | |
g = y + -0.396 * u - 0.581 * v | |
b = y + 2.029 * u | |
rgb = torch.stack([r, g, b], -1) | |
return rgb | |
def rgb_to_yuv(self, img): | |
r = img[..., 0, :, :] | |
g = img[..., 1, :, :] | |
b = img[..., 2, :, :] | |
y = (0.299 * r + 0.587 * g + 0.114 * b) * 255 | |
u = (-0.1471 * r - 0.2889 * g + 0.4360 * b) * 255 + 128 | |
v = (0.6149 * r - 0.5149 * g - 0.1 * b) * 255 + 128 | |
yuv = torch.stack([y, u, v], -1) | |
return torch.clamp(yuv, 0.0, 255.0, out=None).type(dtype=torch.uint8).transpose(3, 2).transpose(2, 1) | |
def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask): | |
swapped_image = kornia.geometry.transform.warp_affine( | |
swapped_image, | |
inv_att_transforms, | |
frame_size, | |
mode="bilinear", | |
padding_mode="border", | |
align_corners=True, | |
fill_value=torch.zeros(3), | |
) | |
square_mask = kornia.geometry.transform.warp_affine( | |
square_mask, | |
inv_att_transforms, | |
frame_size, | |
mode="bilinear", | |
padding_mode="zeros", | |
align_corners=True, | |
fill_value=torch.zeros(3), | |
) | |
return swapped_image, square_mask | |
def smooth_kps(self, kps): | |
self.kps_window.append(kps.flatten()) | |
self.kps_window = self.kps_window[1:] | |
X = np.stack(self.kps_window, axis=1) | |
y = self.kps_window[-1] | |
y_cor = X @ np.linalg.inv(X.transpose() @ X - 0.0007 * np.eye(self.num_frames)) @ X.transpose() @ y | |
self.kps_window[-1] = y_cor | |
return y_cor.reshape((5, 2)) | |
def detect_and_align(self, image, src_is=False): | |
detection = self.facedetector(image) | |
if detection.score is None: | |
self.kps_window = [] | |
return None, None | |
max_score_ind = np.argmax(detection.score, axis=0) | |
kps = detection.key_points[max_score_ind] | |
if len(self.kps_window) < self.num_frames: | |
self.kps_window.append(kps.flatten()) | |
else: | |
kps = self.smooth_kps(kps) | |
align_img, warp_mat = self.alignface.align_face(image, kps, 256) | |
align_img = cv2.resize(align_img, (256, 256)) | |
align_img = align_img.transpose(2, 0, 1) | |
align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float() | |
align_img = align_img / 255.0 | |
if src_is: | |
self.kps_window = [] | |
return align_img, warp_mat | |
def inference(self): | |
src = cv2.cvtColor(cv2.imread(self.source_face), cv2.COLOR_BGR2RGB) | |
src, _ = self.detect_and_align(src, src_is=True) | |
logger.info("start swapping") | |
sr = StreamReader(self.target_video) | |
if self.ffmpeg_device == "cpu": | |
sr.add_basic_video_stream(**self.decode_config) | |
else: | |
sr.add_video_stream(**self.decode_config) | |
sw = StreamWriter(self.swapped_video) | |
sw.add_video_stream(**self.encode_config) | |
with sw.open(): | |
for (chunk,) in sr.stream(): | |
# StreamReader cuda decode颜色格式默认为yuv需要转为rgb | |
chunk = self.yuv_to_rgb(chunk) | |
image = (chunk * 255).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() | |
chunk = chunk.transpose(3, 2).transpose(2, 1).to(self.device) | |
align_img, warp_mat = self.detect_and_align(image) | |
if align_img is None: | |
result_face = chunk | |
else: | |
with torch.no_grad(): | |
swapped_face, m_r = self.model.forward(src, align_img) | |
swapped_face = torch.clamp(swapped_face, 0, 1) | |
smooth_face_mask, _ = self.smooth_mask(m_r) | |
warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0) | |
inverse_warp_mat = inverse_transform_batch(warp_mat) | |
swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine( | |
swapped_face, inverse_warp_mat, self.frame_size, smooth_face_mask | |
) | |
result_face = (1 - smooth_face_mask) * chunk + smooth_face_mask * swapped_face | |
result_face = self.rgb_to_yuv(result_face) | |
sw.write_video_chunk(0, result_face.to(self.ffmpeg_device)) | |
# 将target_video中的音频转移到换脸视频上 | |
command = f"ffmpeg -loglevel error -i {self.swapped_video} -i {self.target_video} -c copy \ | |
-map 0 -map 1:1? -y -shortest {self.swapped_video_with_audio}" | |
os.system(command) | |
# 删除没有音频的换脸视频 | |
os.system(f"rm {self.swapped_video}") | |
class ConfigPath: | |
source_face = "" | |
target_video = "" | |
work_dir = "" | |
face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx" | |
model_path = "" | |
model_idx = 80000 | |
ffmpeg_device = "cuda" | |
def main(): | |
cfg = ConfigPath() | |
parser = argparse.ArgumentParser( | |
prog="benchmark", description="What the program does", epilog="Text at the bottom of help" | |
) | |
parser.add_argument("-m", "--model_path") | |
parser.add_argument("-i", "--model_idx") | |
parser.add_argument("-s", "--source_face") | |
parser.add_argument("-t", "--target_video") | |
parser.add_argument("-w", "--work_dir") | |
parser.add_argument("-f", "--ffmpeg_device") | |
args = parser.parse_args() | |
cfg.source_face = args.source_face | |
cfg.target_video = args.target_video | |
cfg.model_path = args.model_path | |
cfg.model_idx = int(args.model_idx) | |
cfg.work_dir = args.work_dir | |
cfg.ffmpeg_device = args.ffmpeg_device | |
infer = VideoSwap(cfg) | |
infer.inference() | |
if __name__ == "__main__": | |
main() | |