Spaces:
Runtime error
Runtime error
File size: 9,449 Bytes
83d8d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import argparse
import os
import cv2
import kornia
import numpy as np
import torch
from loguru import logger
from torchaudio.io import StreamReader
from torchaudio.io import StreamWriter
from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace
class VideoSwap:
def __init__(self, cfg):
self.source_face = cfg.source_face
self.target_video = cfg.target_video
self.facedetector = FaceDetector(cfg.face_detector_weights)
self.alignface = alignFace()
self.work_dir = cfg.work_dir
opt = TrainConfig()
opt.use_ddp = False
self.device = "cuda"
self.ffmpeg_device = cfg.ffmpeg_device
self.num_frames = 10
self.kps_window = []
checkpoint = (cfg.model_path, cfg.model_idx)
self.model = HifiFace(
opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
)
self.model.eval()
os.makedirs(self.work_dir, exist_ok=True)
self.swapped_video = os.path.join(self.work_dir, "swapped_video.mp4")
# model-idx_image-name_target-video-name.mp4
swapped_with_audio_name = (
str(cfg.model_idx)
+ "_"
+ os.path.basename(self.source_face).split(".")[0]
+ "_"
+ os.path.basename(self.target_video).split(".")[0]
+ ".mp4"
)
# 带有音频的换脸视频
self.swapped_video_with_audio = os.path.join(self.work_dir, swapped_with_audio_name)
video = cv2.VideoCapture(self.target_video)
# 获取视频宽度
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
# 获取视频高度
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 获取帧率
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
video.release()
self.frame_size = (frame_height, frame_width)
if self.ffmpeg_device == "cuda":
self.decode_config = {
"frames_per_chunk": 1,
"decoder": "h264_cuvid",
"decoder_option": {"gpu": "0"},
"hw_accel": "cuda:0",
}
self.encode_config = {
"encoder": "h264_nvenc", # GPU Encoder
"encoder_format": "yuv444p",
"encoder_option": {"gpu": "0"}, # Run encoding on the cuda:0 device
"hw_accel": "cuda:0", # Data comes from cuda:0 device
"frame_rate": frame_rate,
"height": frame_height,
"width": frame_width,
"format": "yuv444p",
}
else:
self.decode_config = {"frames_per_chunk": 1, "decoder": "h264", "format": "yuv444p"}
self.encode_config = {
"encoder": "libx264",
"encoder_format": "yuv444p",
"frame_rate": frame_rate,
"height": frame_height,
"width": frame_width,
"format": "yuv444p",
}
self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)
def yuv_to_rgb(self, img):
img = img.to(torch.float)
y = img[..., 0, :, :]
u = img[..., 1, :, :]
v = img[..., 2, :, :]
y /= 255
u = u / 255 - 0.5
v = v / 255 - 0.5
r = y + 1.14 * v
g = y + -0.396 * u - 0.581 * v
b = y + 2.029 * u
rgb = torch.stack([r, g, b], -1)
return rgb
def rgb_to_yuv(self, img):
r = img[..., 0, :, :]
g = img[..., 1, :, :]
b = img[..., 2, :, :]
y = (0.299 * r + 0.587 * g + 0.114 * b) * 255
u = (-0.1471 * r - 0.2889 * g + 0.4360 * b) * 255 + 128
v = (0.6149 * r - 0.5149 * g - 0.1 * b) * 255 + 128
yuv = torch.stack([y, u, v], -1)
return torch.clamp(yuv, 0.0, 255.0, out=None).type(dtype=torch.uint8).transpose(3, 2).transpose(2, 1)
def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
swapped_image = kornia.geometry.transform.warp_affine(
swapped_image,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="border",
align_corners=True,
fill_value=torch.zeros(3),
)
square_mask = kornia.geometry.transform.warp_affine(
square_mask,
inv_att_transforms,
frame_size,
mode="bilinear",
padding_mode="zeros",
align_corners=True,
fill_value=torch.zeros(3),
)
return swapped_image, square_mask
def smooth_kps(self, kps):
self.kps_window.append(kps.flatten())
self.kps_window = self.kps_window[1:]
X = np.stack(self.kps_window, axis=1)
y = self.kps_window[-1]
y_cor = X @ np.linalg.inv(X.transpose() @ X - 0.0007 * np.eye(self.num_frames)) @ X.transpose() @ y
self.kps_window[-1] = y_cor
return y_cor.reshape((5, 2))
def detect_and_align(self, image, src_is=False):
detection = self.facedetector(image)
if detection.score is None:
self.kps_window = []
return None, None
max_score_ind = np.argmax(detection.score, axis=0)
kps = detection.key_points[max_score_ind]
if len(self.kps_window) < self.num_frames:
self.kps_window.append(kps.flatten())
else:
kps = self.smooth_kps(kps)
align_img, warp_mat = self.alignface.align_face(image, kps, 256)
align_img = cv2.resize(align_img, (256, 256))
align_img = align_img.transpose(2, 0, 1)
align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
align_img = align_img / 255.0
if src_is:
self.kps_window = []
return align_img, warp_mat
def inference(self):
src = cv2.cvtColor(cv2.imread(self.source_face), cv2.COLOR_BGR2RGB)
src, _ = self.detect_and_align(src, src_is=True)
logger.info("start swapping")
sr = StreamReader(self.target_video)
if self.ffmpeg_device == "cpu":
sr.add_basic_video_stream(**self.decode_config)
else:
sr.add_video_stream(**self.decode_config)
sw = StreamWriter(self.swapped_video)
sw.add_video_stream(**self.encode_config)
with sw.open():
for (chunk,) in sr.stream():
# StreamReader cuda decode颜色格式默认为yuv需要转为rgb
chunk = self.yuv_to_rgb(chunk)
image = (chunk * 255).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
chunk = chunk.transpose(3, 2).transpose(2, 1).to(self.device)
align_img, warp_mat = self.detect_and_align(image)
if align_img is None:
result_face = chunk
else:
with torch.no_grad():
swapped_face, m_r = self.model.forward(src, align_img)
swapped_face = torch.clamp(swapped_face, 0, 1)
smooth_face_mask, _ = self.smooth_mask(m_r)
warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
inverse_warp_mat = inverse_transform_batch(warp_mat)
swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
swapped_face, inverse_warp_mat, self.frame_size, smooth_face_mask
)
result_face = (1 - smooth_face_mask) * chunk + smooth_face_mask * swapped_face
result_face = self.rgb_to_yuv(result_face)
sw.write_video_chunk(0, result_face.to(self.ffmpeg_device))
# 将target_video中的音频转移到换脸视频上
command = f"ffmpeg -loglevel error -i {self.swapped_video} -i {self.target_video} -c copy \
-map 0 -map 1:1? -y -shortest {self.swapped_video_with_audio}"
os.system(command)
# 删除没有音频的换脸视频
os.system(f"rm {self.swapped_video}")
class ConfigPath:
source_face = ""
target_video = ""
work_dir = ""
face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
model_path = ""
model_idx = 80000
ffmpeg_device = "cuda"
def main():
cfg = ConfigPath()
parser = argparse.ArgumentParser(
prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
)
parser.add_argument("-m", "--model_path")
parser.add_argument("-i", "--model_idx")
parser.add_argument("-s", "--source_face")
parser.add_argument("-t", "--target_video")
parser.add_argument("-w", "--work_dir")
parser.add_argument("-f", "--ffmpeg_device")
args = parser.parse_args()
cfg.source_face = args.source_face
cfg.target_video = args.target_video
cfg.model_path = args.model_path
cfg.model_idx = int(args.model_idx)
cfg.work_dir = args.work_dir
cfg.ffmpeg_device = args.ffmpeg_device
infer = VideoSwap(cfg)
infer.inference()
if __name__ == "__main__":
main()
|