xuehongyang
ser
83d8d3c

Eval on ICCV2021-MFR

coming soon.

Eval IJBC

You can eval ijbc with pytorch or onnx.

  1. Eval IJBC With Onnx
CUDA_VISIBLE_DEVICES=0 python onnx_ijbc.py --model-root ms1mv3_arcface_r50 --image-path IJB_release/IJBC --result-dir ms1mv3_arcface_r50
  1. Eval IJBC With Pytorch
CUDA_VISIBLE_DEVICES=0,1 python eval_ijbc.py \
--model-prefix ms1mv3_arcface_r50/backbone.pth \
--image-path IJB_release/IJBC \
--result-dir ms1mv3_arcface_r50 \
--batch-size 128 \
--job ms1mv3_arcface_r50 \
--target IJBC \
--network iresnet50

Inference

python inference.py --weight ms1mv3_arcface_r50/backbone.pth --network r50

Result

Datasets Backbone MFR-ALL IJB-C(1E-4) IJB-C(1E-5)
WF12M-PFC-0.05 r100 94.05 97.51 95.75
WF12M-PFC-0.1 r100 94.49 97.56 95.92
WF12M-PFC-0.2 r100 94.75 97.60 95.90
WF12M-PFC-0.3 r100 94.71 97.64 96.01
WF12M r100 94.69 97.59 95.97