|
from .data import load_dataset, SEASONALITY_MAP |
|
from .fit_model import fit_predict_with_model, MODEL_NAME_TO_CLASS |
|
from .score import score_predictions |
|
|
|
|
|
AVAILABLE_MODELS = list(MODEL_NAME_TO_CLASS.keys()) |
|
|
|
AVAILABLE_DATASETS = [ |
|
"car_parts_without_missing", |
|
"cif_2016", |
|
"covid_deaths", |
|
"electricity_hourly", |
|
"electricity_weekly", |
|
"fred_md", |
|
"hospital", |
|
"kaggle_web_traffic_weekly", |
|
"kdd_cup_2018_without_missing", |
|
"m1_monthly", |
|
"m1_quarterly", |
|
"m1_yearly", |
|
"m3_monthly", |
|
"m3_other", |
|
"m3_quarterly", |
|
"m3_yearly", |
|
"m4_daily", |
|
"m4_hourly", |
|
"m4_weekly", |
|
"m4_yearly", |
|
"m4_monthly", |
|
"m4_quarterly", |
|
"nn5_daily_without_missing", |
|
"nn5_weekly", |
|
"pedestrian_counts", |
|
"tourism_monthly", |
|
"tourism_quarterly", |
|
"tourism_yearly", |
|
"uber_tlc_without_missing", |
|
] |
|
|