File size: 862 Bytes
45e60de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from .data import load_dataset, SEASONALITY_MAP
from .fit_model import fit_predict_with_model, MODEL_NAME_TO_CLASS
from .score import score_predictions


AVAILABLE_MODELS = list(MODEL_NAME_TO_CLASS.keys())

AVAILABLE_DATASETS = [
    "car_parts_without_missing",
    "cif_2016",
    "covid_deaths",
    "electricity_hourly",
    "electricity_weekly",
    "fred_md",
    "hospital",
    "kaggle_web_traffic_weekly",
    "kdd_cup_2018_without_missing",
    "m1_monthly",
    "m1_quarterly",
    "m1_yearly",
    "m3_monthly",
    "m3_other",
    "m3_quarterly",
    "m3_yearly",
    "m4_daily",
    "m4_hourly",
    "m4_weekly",
    "m4_yearly",
    "m4_monthly",
    "m4_quarterly",
    "nn5_daily_without_missing",
    "nn5_weekly",
    "pedestrian_counts",
    "tourism_monthly",
    "tourism_quarterly",
    "tourism_yearly",
    "uber_tlc_without_missing",
]