File size: 6,156 Bytes
cfbf309
97ab62b
 
f1bfd9d
97ab62b
 
 
f1bfd9d
 
 
 
 
49f2f3a
97ab62b
 
 
 
 
 
 
 
 
 
 
e460697
 
 
 
 
 
97ab62b
e460697
97ab62b
 
 
 
e460697
 
cfbf309
e460697
 
 
f1bfd9d
e460697
 
cfbf309
97ab62b
 
cfbf309
 
 
 
e460697
97ab62b
 
 
 
 
e460697
 
 
 
d7202b3
 
 
97ab62b
 
 
f1bfd9d
 
 
 
 
 
49f2f3a
f1bfd9d
49f2f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74d9e70
49f2f3a
 
 
f30d430
97ab62b
 
 
b359e4d
 
fc630d0
 
 
b359e4d
e78d565
b359e4d
 
 
 
 
 
 
 
 
59dac5b
b359e4d
eed7913
97ab62b
59dac5b
49f2f3a
 
 
97ab62b
49f2f3a
 
 
 
 
f1bfd9d
 
 
 
 
49f2f3a
 
97ab62b
 
 
74d9e70
cfbf309
49f2f3a
 
74d9e70
eed7913
49f2f3a
 
 
cfbf309
 
 
 
 
 
 
 
74d9e70
49f2f3a
cfbf309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ab62b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import gradio as gr
import pandas as pd

from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.torch.distributions import (
    NegativeBinomialOutput,
    StudentTOutput,
    NormalOutput,
)
from gluonts.evaluation import Evaluator, make_evaluation_predictions

from make_plot import plot_forecast, plot_train_test


def offset_calculation(prediction_length, rolling_windows, length):
    row_offset = -1 * prediction_length * rolling_windows
    if abs(row_offset) > 0.95 * length:
        raise gr.Error("Reduce prediction_length * rolling_windows")
    return row_offset


def preprocess(
    input_data,
    prediction_length,
    rolling_windows,
    progress=gr.Progress(track_tqdm=True),
):
    df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
    df.sort_index(inplace=True)
    row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
    return plot_train_test(df.iloc[:row_offset], df.iloc[row_offset:])


def train_and_forecast(
    input_data,
    file_data,
    prediction_length,
    rolling_windows,
    epochs,
    distribution,
    progress=gr.Progress(track_tqdm=True),
):
    if not input_data and not file_data:
        raise gr.Error("Upload a file with the Upload button")
    try:
        if input_data:
            df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
        else:
            df = pd.read_csv(file_data.name, index_col=0, parse_dates=True)
        df.sort_index(inplace=True)
    except AttributeError:
        raise gr.Error("Upload a file with the Upload button")

    row_offset = offset_calculation(prediction_length, rolling_windows, len(df))

    try:
        gluon_df = PandasDataset(df, target=df.columns[0])
    except TypeError:
        freq = pd.infer_freq(df.index[:3])
        date_range = pd.date_range(df.index[0], df.index[-1], freq=freq)
        new_df = df.reindex(date_range)
        gluon_df = PandasDataset(new_df, target=new_df.columns[0], freq=freq)

    training_data, test_gen = split(gluon_df, offset=row_offset)

    if distribution == "StudentT":
        distr_output = StudentTOutput()
    elif distribution == "Normal":
        distr_output = NormalOutput()
    else:
        distr_output = NegativeBinomialOutput()
    estimator = DeepAREstimator(
        distr_output=distr_output,
        prediction_length=prediction_length,
        freq=gluon_df.freq,
        trainer_kwargs=dict(max_epochs=epochs),
    )

    predictor = estimator.train(
        training_data=training_data,
    )

    test_data = test_gen.generate_instances(
        prediction_length=prediction_length, windows=rolling_windows
    )

    evaluator = Evaluator(num_workers=0)
    forecast_it, ts_it = make_evaluation_predictions(
        dataset=test_data.input, predictor=predictor
    )
    agg_metrics, _ = evaluator(ts_it, forecast_it)

    forecasts = list(predictor.predict(test_data.input))

    return plot_forecast(df, forecasts), agg_metrics


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Probabilistic Time Series Forecasting
    
    ## How to use

    Upload a *univariate* csv where the first column contains date-times and the second column is your data for example:

    | ds    | y        | 
    |------------|---------------|
    | 2007-12-10 | 9.590761      |
    | 2007-12-11 | 8.519590      |
    | 2007-12-12 | 8.183677      |
    | 2007-12-13 | 8.072467      |
    | 2007-12-14 | 7.893572      |

    ## Steps

    1. Click **Upload** to upload your data and visualize it **or** select one of the example CSV files.
    2. Click **Run**
        - This app will then train an estimator and show its predictions as well as evaluation metrics.
    """
    )
    with gr.Accordion(label="Hyperparameters"):
        with gr.Row():
            prediction_length = gr.Number(
                value=12, label="Prediction Length", precision=0
            )
            windows = gr.Number(value=3, label="Number of Windows", precision=0)
            epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
            distribution = gr.Radio(
                choices=["StudentT", "Negative Binomial", "Normal"],
                value="StudentT",
                label="Distribution",
            )

    with gr.Row(label="Dataset"):
        upload_btn = gr.UploadButton(label="Upload")
        train_btn = gr.Button(label="Train and Forecast")
    plot = gr.Plot()
    json = gr.JSON(label="Evaluation Metrics")
    file_output = gr.File()
    upload_btn.upload(
        fn=preprocess,
        inputs=[upload_btn, prediction_length, windows],
        outputs=[plot],
    )
    train_btn.click(
        fn=train_and_forecast,
        inputs=[
            upload_btn,
            file_output,
            prediction_length,
            windows,
            epochs,
            distribution,
        ],
        outputs=[plot, json],
    )
    with gr.Row(label="Example Data"):
        examples = gr.Examples(
            examples=[
                [
                    os.path.join(
                        os.path.dirname(__file__),
                        "examples",
                        "example_air_passengers.csv",
                    ),
                    12,
                    3,
                ],
                [
                    os.path.join(
                        os.path.dirname(__file__),
                        "examples",
                        "example_retail_sales.csv",
                    ),
                    12,
                    3,
                ],
                [
                    os.path.join(
                        os.path.dirname(__file__),
                        "examples",
                        "example_pedestrians_covid.csv",
                    ),
                    12,
                    3,
                ],
            ],
            fn=preprocess,
            inputs=[file_output, prediction_length, windows],
            outputs=[plot],
            run_on_click=True,
        )

if __name__ == "__main__":
    demo.queue().launch()