File size: 6,156 Bytes
cfbf309 97ab62b f1bfd9d 97ab62b f1bfd9d 49f2f3a 97ab62b e460697 97ab62b e460697 97ab62b e460697 cfbf309 e460697 f1bfd9d e460697 cfbf309 97ab62b cfbf309 e460697 97ab62b e460697 d7202b3 97ab62b f1bfd9d 49f2f3a f1bfd9d 49f2f3a 74d9e70 49f2f3a f30d430 97ab62b b359e4d fc630d0 b359e4d e78d565 b359e4d 59dac5b b359e4d eed7913 97ab62b 59dac5b 49f2f3a 97ab62b 49f2f3a f1bfd9d 49f2f3a 97ab62b 74d9e70 cfbf309 49f2f3a 74d9e70 eed7913 49f2f3a cfbf309 74d9e70 49f2f3a cfbf309 97ab62b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import gradio as gr
import pandas as pd
from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.torch.distributions import (
NegativeBinomialOutput,
StudentTOutput,
NormalOutput,
)
from gluonts.evaluation import Evaluator, make_evaluation_predictions
from make_plot import plot_forecast, plot_train_test
def offset_calculation(prediction_length, rolling_windows, length):
row_offset = -1 * prediction_length * rolling_windows
if abs(row_offset) > 0.95 * length:
raise gr.Error("Reduce prediction_length * rolling_windows")
return row_offset
def preprocess(
input_data,
prediction_length,
rolling_windows,
progress=gr.Progress(track_tqdm=True),
):
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
return plot_train_test(df.iloc[:row_offset], df.iloc[row_offset:])
def train_and_forecast(
input_data,
file_data,
prediction_length,
rolling_windows,
epochs,
distribution,
progress=gr.Progress(track_tqdm=True),
):
if not input_data and not file_data:
raise gr.Error("Upload a file with the Upload button")
try:
if input_data:
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
else:
df = pd.read_csv(file_data.name, index_col=0, parse_dates=True)
df.sort_index(inplace=True)
except AttributeError:
raise gr.Error("Upload a file with the Upload button")
row_offset = offset_calculation(prediction_length, rolling_windows, len(df))
try:
gluon_df = PandasDataset(df, target=df.columns[0])
except TypeError:
freq = pd.infer_freq(df.index[:3])
date_range = pd.date_range(df.index[0], df.index[-1], freq=freq)
new_df = df.reindex(date_range)
gluon_df = PandasDataset(new_df, target=new_df.columns[0], freq=freq)
training_data, test_gen = split(gluon_df, offset=row_offset)
if distribution == "StudentT":
distr_output = StudentTOutput()
elif distribution == "Normal":
distr_output = NormalOutput()
else:
distr_output = NegativeBinomialOutput()
estimator = DeepAREstimator(
distr_output=distr_output,
prediction_length=prediction_length,
freq=gluon_df.freq,
trainer_kwargs=dict(max_epochs=epochs),
)
predictor = estimator.train(
training_data=training_data,
)
test_data = test_gen.generate_instances(
prediction_length=prediction_length, windows=rolling_windows
)
evaluator = Evaluator(num_workers=0)
forecast_it, ts_it = make_evaluation_predictions(
dataset=test_data.input, predictor=predictor
)
agg_metrics, _ = evaluator(ts_it, forecast_it)
forecasts = list(predictor.predict(test_data.input))
return plot_forecast(df, forecasts), agg_metrics
with gr.Blocks() as demo:
gr.Markdown(
"""
# Probabilistic Time Series Forecasting
## How to use
Upload a *univariate* csv where the first column contains date-times and the second column is your data for example:
| ds | y |
|------------|---------------|
| 2007-12-10 | 9.590761 |
| 2007-12-11 | 8.519590 |
| 2007-12-12 | 8.183677 |
| 2007-12-13 | 8.072467 |
| 2007-12-14 | 7.893572 |
## Steps
1. Click **Upload** to upload your data and visualize it **or** select one of the example CSV files.
2. Click **Run**
- This app will then train an estimator and show its predictions as well as evaluation metrics.
"""
)
with gr.Accordion(label="Hyperparameters"):
with gr.Row():
prediction_length = gr.Number(
value=12, label="Prediction Length", precision=0
)
windows = gr.Number(value=3, label="Number of Windows", precision=0)
epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
distribution = gr.Radio(
choices=["StudentT", "Negative Binomial", "Normal"],
value="StudentT",
label="Distribution",
)
with gr.Row(label="Dataset"):
upload_btn = gr.UploadButton(label="Upload")
train_btn = gr.Button(label="Train and Forecast")
plot = gr.Plot()
json = gr.JSON(label="Evaluation Metrics")
file_output = gr.File()
upload_btn.upload(
fn=preprocess,
inputs=[upload_btn, prediction_length, windows],
outputs=[plot],
)
train_btn.click(
fn=train_and_forecast,
inputs=[
upload_btn,
file_output,
prediction_length,
windows,
epochs,
distribution,
],
outputs=[plot, json],
)
with gr.Row(label="Example Data"):
examples = gr.Examples(
examples=[
[
os.path.join(
os.path.dirname(__file__),
"examples",
"example_air_passengers.csv",
),
12,
3,
],
[
os.path.join(
os.path.dirname(__file__),
"examples",
"example_retail_sales.csv",
),
12,
3,
],
[
os.path.join(
os.path.dirname(__file__),
"examples",
"example_pedestrians_covid.csv",
),
12,
3,
],
],
fn=preprocess,
inputs=[file_output, prediction_length, windows],
outputs=[plot],
run_on_click=True,
)
if __name__ == "__main__":
demo.queue().launch()
|