added evaluation metrics
Browse files
app.py
CHANGED
@@ -19,7 +19,6 @@ def preprocess(
|
|
19 |
input_data,
|
20 |
prediction_length,
|
21 |
rolling_windows,
|
22 |
-
item_id,
|
23 |
progress=gr.Progress(track_tqdm=True),
|
24 |
):
|
25 |
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
|
@@ -73,12 +72,11 @@ def train_and_forecast(
|
|
73 |
forecast_it, ts_it = make_evaluation_predictions(
|
74 |
dataset=test_data.input, predictor=predictor
|
75 |
)
|
|
|
76 |
|
77 |
forecasts = list(predictor.predict(test_data.input))
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
return plot_forecast(df, forecasts)
|
82 |
|
83 |
|
84 |
with gr.Blocks() as demo:
|
@@ -112,20 +110,20 @@ with gr.Blocks() as demo:
|
|
112 |
epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
|
113 |
|
114 |
with gr.Row(label="Dataset"):
|
115 |
-
item_id = gr.Textbox(label="Item ID")
|
116 |
upload_btn = gr.UploadButton(label="Upload")
|
117 |
train_btn = gr.Button(label="Train and Forecast")
|
118 |
plot = gr.Plot()
|
|
|
119 |
|
120 |
upload_btn.upload(
|
121 |
fn=preprocess,
|
122 |
-
inputs=[upload_btn, prediction_length, windows
|
123 |
outputs=plot,
|
124 |
)
|
125 |
train_btn.click(
|
126 |
fn=train_and_forecast,
|
127 |
inputs=[upload_btn, prediction_length, windows, epochs],
|
128 |
-
outputs=plot,
|
129 |
)
|
130 |
|
131 |
if __name__ == "__main__":
|
|
|
19 |
input_data,
|
20 |
prediction_length,
|
21 |
rolling_windows,
|
|
|
22 |
progress=gr.Progress(track_tqdm=True),
|
23 |
):
|
24 |
df = pd.read_csv(input_data.name, index_col=0, parse_dates=True)
|
|
|
72 |
forecast_it, ts_it = make_evaluation_predictions(
|
73 |
dataset=test_data.input, predictor=predictor
|
74 |
)
|
75 |
+
agg_metrics, _ = evaluator(ts_it, forecast_it)
|
76 |
|
77 |
forecasts = list(predictor.predict(test_data.input))
|
78 |
|
79 |
+
return plot_forecast(df, forecasts, agg_metrics)
|
|
|
|
|
80 |
|
81 |
|
82 |
with gr.Blocks() as demo:
|
|
|
110 |
epochs = gr.Number(value=10, label="Number of Epochs", precision=0)
|
111 |
|
112 |
with gr.Row(label="Dataset"):
|
|
|
113 |
upload_btn = gr.UploadButton(label="Upload")
|
114 |
train_btn = gr.Button(label="Train and Forecast")
|
115 |
plot = gr.Plot()
|
116 |
+
json = gr.JSON(label="Evaluation Metrics")
|
117 |
|
118 |
upload_btn.upload(
|
119 |
fn=preprocess,
|
120 |
+
inputs=[upload_btn, prediction_length, windows],
|
121 |
outputs=plot,
|
122 |
)
|
123 |
train_btn.click(
|
124 |
fn=train_and_forecast,
|
125 |
inputs=[upload_btn, prediction_length, windows, epochs],
|
126 |
+
outputs=[plot, json],
|
127 |
)
|
128 |
|
129 |
if __name__ == "__main__":
|