Spaces:
Runtime error
Runtime error
import json | |
import requests | |
import gradio as gr | |
import random | |
import time | |
import os | |
import datetime | |
from datetime import datetime | |
from PIL import Image | |
from PIL import ImageOps | |
from PIL import Image, ImageDraw, ImageFont | |
from textwrap import wrap | |
import json | |
from io import BytesIO | |
print('for update') | |
API_TOKEN = os.getenv("API_TOKEN") | |
HRA_TOKEN=os.getenv("HRA_TOKEN") | |
from huggingface_hub import InferenceApi | |
inference = InferenceApi("bigscience/bloom",token=API_TOKEN) | |
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} | |
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts' | |
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN} | |
try: | |
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_text=str(r.content, 'UTF-8') | |
print(prompt_text) | |
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN} | |
try: | |
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_image=str(r.content, 'UTF-8') | |
print(prompt_image) | |
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint | |
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint | |
HF_TOKEN=API_TOKEN# token where you deployed your endpoint | |
def generate_image(prompt_SD:str): | |
payload = {"inputs": prompt_SD,} | |
headers = { | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json", | |
"Accept": "image/png" # important to get an image back | |
} | |
response = requests.post(ENDPOINT_URL, headers=headers, json=payload) | |
#print(response.content) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
def infer(prompt, | |
max_length = 250, | |
top_k = 0, | |
num_beams = 0, | |
no_repeat_ngram_size = 2, | |
top_p = 0.9, | |
seed=42, | |
temperature=0.7, | |
greedy_decoding = False, | |
return_full_text = False): | |
print(seed) | |
top_k = None if top_k == 0 else top_k | |
do_sample = False if num_beams > 0 else not greedy_decoding | |
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams | |
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size | |
top_p = None if num_beams else top_p | |
early_stopping = None if num_beams is None else num_beams > 0 | |
params = { | |
"max_new_tokens": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"do_sample": do_sample, | |
"seed": seed, | |
"early_stopping":early_stopping, | |
"no_repeat_ngram_size":no_repeat_ngram_size, | |
"num_beams":num_beams, | |
"return_full_text":return_full_text | |
} | |
s = time.time() | |
response = inference(prompt, params=params) | |
#print(response) | |
proc_time = time.time()-s | |
#print(f"Processing time was {proc_time} seconds") | |
return response | |
def getadline(text_inp): | |
print(text_inp) | |
print(datetime.today().strftime("%d-%m-%Y")) | |
text = prompt_text+"\nInput:"+text_inp + "\nOutput:" | |
resp = infer(text,seed=random.randint(0,100)) | |
generated_text=resp[0]['generated_text'] | |
result = generated_text.replace(text,'').strip() | |
result = result.replace("Output:","") | |
parts = result.split("###") | |
topic = parts[0].strip() | |
topic="\n".join(topic.split('\n')) | |
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt') | |
data_nsfw = response_nsfw.text | |
nsfwlist=data_nsfw.split('\n') | |
nsfwlowerlist=[] | |
for each in nsfwlist: | |
if each!='': | |
nsfwlowerlist.append(each.lower()) | |
nsfwlowerlist.extend(['bra','gay','lesbian',]) | |
print(topic) | |
mainstring=text_inp | |
foundnsfw=0 | |
for each_word in nsfwlowerlist: | |
raw_search_string = r"\b" + each_word + r"\b" | |
match_output = re.search(raw_search_string, mainstring) | |
no_match_was_found = ( match_output is None ) | |
if no_match_was_found: | |
foundnsfw=0 | |
else: | |
foundnsfw=1 | |
print(each_word) | |
break | |
if foundnsfw==1: | |
topic="Unsafe content found. Please try again with different prompts." | |
print(topic) | |
return(topic) | |
def getadvertisement(topic): | |
if topic!='': | |
input_keyword=topic | |
else: | |
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz')) | |
if 'Unsafe content found' in input_keyword: | |
input_keyword='Abstarct art with splash of colors' | |
prompt_SD=input_keyword+','+prompt_image | |
# generate image | |
image = generate_image(prompt_SD) | |
# save to disk | |
image.save("finalimage.png") | |
return 'finalimage.png' | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Tee Shirt Designs</center></h1>") | |
gr.Markdown( | |
"""Enter a prompt and get the tee shirt design. Use examples as a guide. We use an equally powerful AI model bigscience/bloom.""" | |
) | |
textbox = gr.Textbox(placeholder="Enter prompt...", lines=1,label='Your prompt') | |
btn = gr.Button("Generate") | |
#output1 = gr.Textbox(lines=2,label='Market Sizing Framework') | |
output_image = gr.components.Image(label="Your tee shirt") | |
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image]) | |
examples = gr.Examples(examples=['anime art of man fighting','intricate skull','heavy metal band cover','abstract art of plants',], | |
inputs=[textbox]) | |
demo.launch() |