Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
import datetime
|
8 |
+
from datetime import datetime
|
9 |
+
from PIL import Image
|
10 |
+
from PIL import ImageOps
|
11 |
+
from PIL import Image, ImageDraw, ImageFont
|
12 |
+
from textwrap import wrap
|
13 |
+
import json
|
14 |
+
from io import BytesIO
|
15 |
+
|
16 |
+
print('for update')
|
17 |
+
|
18 |
+
API_TOKEN = os.getenv("API_TOKEN")
|
19 |
+
HRA_TOKEN=os.getenv("HRA_TOKEN")
|
20 |
+
|
21 |
+
|
22 |
+
from huggingface_hub import InferenceApi
|
23 |
+
inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
|
24 |
+
|
25 |
+
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
|
26 |
+
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts'
|
27 |
+
|
28 |
+
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN}
|
29 |
+
try:
|
30 |
+
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
|
31 |
+
except requests.exceptions.ReadTimeout as e:
|
32 |
+
print(e)
|
33 |
+
#print(r.content)
|
34 |
+
|
35 |
+
|
36 |
+
prompt_text=str(r.content, 'UTF-8')
|
37 |
+
print(prompt_text)
|
38 |
+
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN}
|
39 |
+
try:
|
40 |
+
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
|
41 |
+
except requests.exceptions.ReadTimeout as e:
|
42 |
+
print(e)
|
43 |
+
#print(r.content)
|
44 |
+
|
45 |
+
prompt_image=str(r.content, 'UTF-8')
|
46 |
+
print(prompt_image)
|
47 |
+
|
48 |
+
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint
|
49 |
+
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint
|
50 |
+
HF_TOKEN=API_TOKEN# token where you deployed your endpoint
|
51 |
+
|
52 |
+
def generate_image(prompt_SD:str):
|
53 |
+
payload = {"inputs": prompt_SD,}
|
54 |
+
headers = {
|
55 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
56 |
+
"Content-Type": "application/json",
|
57 |
+
"Accept": "image/png" # important to get an image back
|
58 |
+
}
|
59 |
+
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
60 |
+
#print(response.content)
|
61 |
+
img = Image.open(BytesIO(response.content))
|
62 |
+
|
63 |
+
return img
|
64 |
+
|
65 |
+
def infer(prompt,
|
66 |
+
max_length = 250,
|
67 |
+
top_k = 0,
|
68 |
+
num_beams = 0,
|
69 |
+
no_repeat_ngram_size = 2,
|
70 |
+
top_p = 0.9,
|
71 |
+
seed=42,
|
72 |
+
temperature=0.7,
|
73 |
+
greedy_decoding = False,
|
74 |
+
return_full_text = False):
|
75 |
+
|
76 |
+
print(seed)
|
77 |
+
top_k = None if top_k == 0 else top_k
|
78 |
+
do_sample = False if num_beams > 0 else not greedy_decoding
|
79 |
+
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
|
80 |
+
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
|
81 |
+
top_p = None if num_beams else top_p
|
82 |
+
early_stopping = None if num_beams is None else num_beams > 0
|
83 |
+
|
84 |
+
params = {
|
85 |
+
"max_new_tokens": max_length,
|
86 |
+
"top_k": top_k,
|
87 |
+
"top_p": top_p,
|
88 |
+
"temperature": temperature,
|
89 |
+
"do_sample": do_sample,
|
90 |
+
"seed": seed,
|
91 |
+
"early_stopping":early_stopping,
|
92 |
+
"no_repeat_ngram_size":no_repeat_ngram_size,
|
93 |
+
"num_beams":num_beams,
|
94 |
+
"return_full_text":return_full_text
|
95 |
+
}
|
96 |
+
|
97 |
+
s = time.time()
|
98 |
+
response = inference(prompt, params=params)
|
99 |
+
#print(response)
|
100 |
+
proc_time = time.time()-s
|
101 |
+
#print(f"Processing time was {proc_time} seconds")
|
102 |
+
return response
|
103 |
+
|
104 |
+
def getadline(text_inp):
|
105 |
+
print(text_inp)
|
106 |
+
print(datetime.today().strftime("%d-%m-%Y"))
|
107 |
+
|
108 |
+
text = prompt_text+"\nInput:"+text_inp + "\nOutput:"
|
109 |
+
resp = infer(text,seed=random.randint(0,100))
|
110 |
+
|
111 |
+
generated_text=resp[0]['generated_text']
|
112 |
+
result = generated_text.replace(text,'').strip()
|
113 |
+
result = result.replace("Output:","")
|
114 |
+
parts = result.split("###")
|
115 |
+
topic = parts[0].strip()
|
116 |
+
topic="\n".join(topic.split('\n'))
|
117 |
+
|
118 |
+
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt')
|
119 |
+
data_nsfw = response_nsfw.text
|
120 |
+
nsfwlist=data_nsfw.split('\n')
|
121 |
+
nsfwlowerlist=[]
|
122 |
+
for each in nsfwlist:
|
123 |
+
if each!='':
|
124 |
+
nsfwlowerlist.append(each.lower())
|
125 |
+
nsfwlowerlist.extend(['bra','gay','lesbian',])
|
126 |
+
print(topic)
|
127 |
+
mainstring=text_inp
|
128 |
+
foundnsfw=0
|
129 |
+
for each_word in nsfwlowerlist:
|
130 |
+
raw_search_string = r"\b" + each_word + r"\b"
|
131 |
+
match_output = re.search(raw_search_string, mainstring)
|
132 |
+
no_match_was_found = ( match_output is None )
|
133 |
+
if no_match_was_found:
|
134 |
+
foundnsfw=0
|
135 |
+
else:
|
136 |
+
foundnsfw=1
|
137 |
+
print(each_word)
|
138 |
+
break
|
139 |
+
if foundnsfw==1:
|
140 |
+
topic="Unsafe content found. Please try again with different prompts."
|
141 |
+
print(topic)
|
142 |
+
return(topic)
|
143 |
+
|
144 |
+
def getadvertisement(topic):
|
145 |
+
if topic!='':
|
146 |
+
input_keyword=topic
|
147 |
+
else:
|
148 |
+
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz'))
|
149 |
+
if 'Unsafe content found' in input_keyword:
|
150 |
+
input_keyword='Abstarct art with splash of colors'
|
151 |
+
prompt_SD=input_keyword+','+prompt_image
|
152 |
+
# generate image
|
153 |
+
image = generate_image(prompt_SD)
|
154 |
+
|
155 |
+
# save to disk
|
156 |
+
image.save("finalimage.png")
|
157 |
+
|
158 |
+
return 'finalimage.png'
|
159 |
+
|
160 |
+
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
gr.Markdown("<h1><center>Tee Shirt Designs</center></h1>")
|
163 |
+
gr.Markdown(
|
164 |
+
"""Enter a prompt and get the tee shirt design. Use examples as a guide. We use an equally powerful AI model bigscience/bloom."""
|
165 |
+
)
|
166 |
+
textbox = gr.Textbox(placeholder="Enter prompt...", lines=1,label='Your prompt')
|
167 |
+
btn = gr.Button("Generate")
|
168 |
+
#output1 = gr.Textbox(lines=2,label='Market Sizing Framework')
|
169 |
+
output_image = gr.components.Image(label="Your tee shirt")
|
170 |
+
|
171 |
+
|
172 |
+
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image])
|
173 |
+
examples = gr.Examples(examples=['anime art of man fighting','intricate skull','heavy metal band cover','abstract art of plants',],
|
174 |
+
inputs=[textbox])
|
175 |
+
|
176 |
+
|
177 |
+
demo.launch()
|