hra's picture
Update app.py
4af011d
raw
history blame
5.99 kB
import json
import requests
import gradio as gr
import random
import time
import os
import datetime
from datetime import datetime
from PIL import Image
from PIL import ImageOps
from PIL import Image, ImageDraw, ImageFont
from textwrap import wrap
import json
from io import BytesIO
print('for update')
API_TOKEN = os.getenv("API_TOKEN")
HRA_TOKEN=os.getenv("HRA_TOKEN")
from huggingface_hub import InferenceApi
inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts'
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_text=str(r.content, 'UTF-8')
print(prompt_text)
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_image=str(r.content, 'UTF-8')
print(prompt_image)
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint
HF_TOKEN=API_TOKEN# token where you deployed your endpoint
def generate_image(prompt_SD:str):
print(prompt_SD)
payload = {"inputs": prompt_SD,"seed":random.randint(0,100),"negative_prompt":"low quality","parameters": {
"width": 768,
"height": 768,
}}
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"Accept": "image/png" # important to get an image back
}
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
print(response.content)
img = Image.open(BytesIO(response.content))
return img
def infer(prompt,
max_length = 250,
top_k = 0,
num_beams = 0,
no_repeat_ngram_size = 2,
top_p = 0.9,
seed=42,
temperature=0.7,
greedy_decoding = False,
return_full_text = False):
print('Empty input')
print(prompt)
top_k = None if top_k == 0 else top_k
do_sample = False if num_beams > 0 else not greedy_decoding
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
top_p = None if num_beams else top_p
early_stopping = None if num_beams is None else num_beams > 0
params = {
"max_new_tokens": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"seed": seed,
"early_stopping":early_stopping,
"no_repeat_ngram_size":no_repeat_ngram_size,
"num_beams":num_beams,
"return_full_text":return_full_text,
"raw_response":True
}
s = time.time()
response = inference(prompt, params=params)
print(response)
proc_time = time.time()-s
#print(f"Processing time was {proc_time} seconds")
return response
def getadline(text_inp):
print(text_inp)
print(datetime.today().strftime("%d-%m-%Y"))
text = prompt_text+"\nInput:"+text_inp + "\nOutput:"
resp = infer(text,seed=random.randint(0,100))
generated_text=resp[0]['generated_text']
result = generated_text.replace(text,'').strip()
result = result.replace("Output:","")
parts = result.split("###")
topic = parts[0].strip()
topic="\n".join(topic.split('\n'))
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt')
data_nsfw = response_nsfw.text
nsfwlist=data_nsfw.split('\n')
nsfwlowerlist=[]
for each in nsfwlist:
if each!='':
nsfwlowerlist.append(each.lower())
nsfwlowerlist.extend(['bra','gay','lesbian',])
print(topic)
mainstring=text_inp
foundnsfw=0
for each_word in nsfwlowerlist:
raw_search_string = r"\b" + each_word + r"\b"
match_output = re.search(raw_search_string, mainstring)
no_match_was_found = ( match_output is None )
if no_match_was_found:
foundnsfw=0
else:
foundnsfw=1
print(each_word)
break
if foundnsfw==1:
topic="Unsafe content found. Please try again with different prompts."
print(topic)
return(topic)
def getadvertisement(topic):
if topic!='':
input_keyword=topic
else:
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz'))
if 'Unsafe content found' in input_keyword:
input_keyword='Abstract art with a splash of colors'
prompt_SD=input_keyword+','+prompt_image
# generate image
image = generate_image(prompt_SD)
# save to disk
image.save("finalimage.png")
return 'finalimage.png'
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Tee Shirt Designs</center></h1>")
gr.Markdown(
"""Enter a prompt and get the tee shirt design. Use examples as a guide. We use an equally powerful AI model bigscience/bloom."""
)
with gr.Row() as row:
with gr.Column():
textbox = gr.Textbox(placeholder="Enter prompt...", lines=1,label='Your prompt')
btn = gr.Button("Generate")
with gr.Column():
output_image = gr.components.Image(label="Your tee shirt")
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image])
examples = gr.Examples(examples=['anime art of man fighting','intricate skull','heavy metal band cover','abstract art of plants',],
inputs=[textbox])
demo.launch()