Spaces:
Runtime error
Runtime error
File size: 5,992 Bytes
cf9e738 831acb3 4af011d 9d6cb2f 4af011d 9d6cb2f cf9e738 831acb3 cf9e738 2170c7e cf9e738 da4c613 cf9e738 da4c613 cf9e738 2170c7e cf9e738 2170c7e da4c613 cf9e738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import json
import requests
import gradio as gr
import random
import time
import os
import datetime
from datetime import datetime
from PIL import Image
from PIL import ImageOps
from PIL import Image, ImageDraw, ImageFont
from textwrap import wrap
import json
from io import BytesIO
print('for update')
API_TOKEN = os.getenv("API_TOKEN")
HRA_TOKEN=os.getenv("HRA_TOKEN")
from huggingface_hub import InferenceApi
inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts'
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_text=str(r.content, 'UTF-8')
print(prompt_text)
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_image=str(r.content, 'UTF-8')
print(prompt_image)
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint
HF_TOKEN=API_TOKEN# token where you deployed your endpoint
def generate_image(prompt_SD:str):
print(prompt_SD)
payload = {"inputs": prompt_SD,"seed":random.randint(0,100),"negative_prompt":"low quality","parameters": {
"width": 768,
"height": 768,
}}
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"Accept": "image/png" # important to get an image back
}
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
print(response.content)
img = Image.open(BytesIO(response.content))
return img
def infer(prompt,
max_length = 250,
top_k = 0,
num_beams = 0,
no_repeat_ngram_size = 2,
top_p = 0.9,
seed=42,
temperature=0.7,
greedy_decoding = False,
return_full_text = False):
print('Empty input')
print(prompt)
top_k = None if top_k == 0 else top_k
do_sample = False if num_beams > 0 else not greedy_decoding
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
top_p = None if num_beams else top_p
early_stopping = None if num_beams is None else num_beams > 0
params = {
"max_new_tokens": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"seed": seed,
"early_stopping":early_stopping,
"no_repeat_ngram_size":no_repeat_ngram_size,
"num_beams":num_beams,
"return_full_text":return_full_text,
"raw_response":True
}
s = time.time()
response = inference(prompt, params=params)
print(response)
proc_time = time.time()-s
#print(f"Processing time was {proc_time} seconds")
return response
def getadline(text_inp):
print(text_inp)
print(datetime.today().strftime("%d-%m-%Y"))
text = prompt_text+"\nInput:"+text_inp + "\nOutput:"
resp = infer(text,seed=random.randint(0,100))
generated_text=resp[0]['generated_text']
result = generated_text.replace(text,'').strip()
result = result.replace("Output:","")
parts = result.split("###")
topic = parts[0].strip()
topic="\n".join(topic.split('\n'))
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt')
data_nsfw = response_nsfw.text
nsfwlist=data_nsfw.split('\n')
nsfwlowerlist=[]
for each in nsfwlist:
if each!='':
nsfwlowerlist.append(each.lower())
nsfwlowerlist.extend(['bra','gay','lesbian',])
print(topic)
mainstring=text_inp
foundnsfw=0
for each_word in nsfwlowerlist:
raw_search_string = r"\b" + each_word + r"\b"
match_output = re.search(raw_search_string, mainstring)
no_match_was_found = ( match_output is None )
if no_match_was_found:
foundnsfw=0
else:
foundnsfw=1
print(each_word)
break
if foundnsfw==1:
topic="Unsafe content found. Please try again with different prompts."
print(topic)
return(topic)
def getadvertisement(topic):
if topic!='':
input_keyword=topic
else:
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz'))
if 'Unsafe content found' in input_keyword:
input_keyword='Abstract art with a splash of colors'
prompt_SD=input_keyword+','+prompt_image
# generate image
image = generate_image(prompt_SD)
# save to disk
image.save("finalimage.png")
return 'finalimage.png'
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Tee Shirt Designs</center></h1>")
gr.Markdown(
"""Enter a prompt and get the tee shirt design. Use examples as a guide. We use an equally powerful AI model bigscience/bloom."""
)
with gr.Row() as row:
with gr.Column():
textbox = gr.Textbox(placeholder="Enter prompt...", lines=1,label='Your prompt')
btn = gr.Button("Generate")
with gr.Column():
output_image = gr.components.Image(label="Your tee shirt")
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image])
examples = gr.Examples(examples=['anime art of man fighting','intricate skull','heavy metal band cover','abstract art of plants',],
inputs=[textbox])
demo.launch() |