A newer version of the Gradio SDK is available:
5.6.0
MOTRv2: Bootstrapping End-to-End Multi-Object Tracking by Pretrained Object Detectors
This fork from https://github.com/megvii-research/MOTRv2 MOTRv2, and after we will release our code CO-MOT.
Main Results
DanceTrack
HOTA | DetA | AssA | MOTA | IDF1 | URL |
---|---|---|---|---|---|
69.9 | 83.0 | 59.0 | 91.9 | 71.7 | model |
Visualization
Installation
The codebase is built on top of Deformable DETR and MOTR.
Requirements
Install pytorch using conda (optional)
conda create -n motrv2 python=3.9 conda activate motrv2 conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
Other requirements
pip install -r requirements.txt
Build MultiScaleDeformableAttention
cd ./models/ops sh ./make.sh
Usage
Dataset preparation
- Download YOLOX detection from here.
- Please download DanceTrack and CrowdHuman and unzip them as follows:
/data/Dataset/mot
βββ crowdhuman
β βββ annotation_train.odgt
β βββ annotation_trainval.odgt
β βββ annotation_val.odgt
β βββ Images
βββ DanceTrack
β βββ test
β βββ train
β βββ val
βββ det_db_motrv2.json
You may use the following command for generating crowdhuman trainval annotation:
cat annotation_train.odgt annotation_val.odgt > annotation_trainval.odgt
Training
You may download the coco pretrained weight from Deformable DETR (+ iterative bounding box refinement), and modify the --pretrained
argument to the path of the weight. Then training MOTR on 8 GPUs as following:
./tools/train.sh configs/motrv2.args
Inference on DanceTrack Test Set
- Download SAM weigth fro ViT-H SAM model
- run
# run a simple inference on our pretrained weights
./tools/simple_inference.sh ./motrv2_dancetrack.pth
# Or evaluate an experiment run
# ./tools/eval.sh exps/motrv2/run1
# then zip the results
zip motrv2.zip tracker/ -r
if you want run on yourself data, please get detection results from ByteTrackInference firstly.